Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Geriatr Psychiatry ; 39(6): e6104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877354

ABSTRACT

The central nervous system (CNS) is widely recognized as the only organ system without lymphatic capillaries to promote the removal of interstitial metabolic by-products. Thus, the newly identified glymphatic system which provides a pseudolymphatic activity in the nervous system has been focus of latest research in neurosciences. Also, findings reported that, sleep stimulates the elimination actions of glymphatic system and is linked to normal brain homeostatis. The CNS is cleared of potentially hazardous compounds via the glymphatic system, particularly during sleep. Any age-related alterations in brain functioning and pathophysiology of various neurodegenerative illnesses indicates the disturbance of the brain's glymphatic system. In this context, ß-amyloid as well as tau leaves the CNS through the glymphatic system, it's functioning and CSF discharge markedly altered in elderly brains as per many findings. Thus, glymphatic failure may have a potential mechanism which may be therapeutically targetable in several neurodegenerative and age-associated cognitive diseases. Therefore, there is an urge to focus for more research into the connection among glymphatic system and several potential brain related diseases. Here, in our current review paper, we reviewed current research on the glymphatic system's involvement in a number of prevalent neurodegenerative and neuropsychiatric diseases and, we also discussed several therapeutic approaches, diet and life style modifications which might be used to acquire a more thorough performance and purpose of the glymphatic system to decipher novel prospects for clinical applicability for the management of these diseases.


Subject(s)
Glymphatic System , Neurodegenerative Diseases , Humans , Glymphatic System/physiopathology , Glymphatic System/physiology , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/metabolism , Brain/physiopathology , Brain/metabolism , Amyloid beta-Peptides/metabolism
2.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38138161

ABSTRACT

Background and Objectives: Cyclooxygenase-2 (COX-2) is mostly linked to inflammation and has been validated as a molecular target for treating inflammatory diseases. The present study aimed to identify novel compounds that could inhibit COX-2, which is associated with various diseases including inflammation, and in such a scenario, plant-derived biomolecules have been considered as attractive candidates. Materials and Methods: In the present study, physiochemical properties and toxicity of natural compounds/drugs were determined by SWISSADME and ProTox-II. In the present study, the molecular docking binding features of saffron derivatives (crocetin, picrocrocin, quercetin, safranal, crocin, rutin, and dimethylcrocetin) against human COX-2 protein were assessed. Moreover, protein-protein interactions, topographic properties, gene enrichment analysis and molecular dynamics simulation were also determined. Results: The present study revealed that picrocrocin showed the highest binding affinity of -8.1 kcal/mol when docked against the COX-2 protein. PROCHECK analysis revealed that 90.3% of the protein residues were found in the most favored region. Compartmentalized Protein-Protein Interaction identified 90 interactions with an average interaction score of 0.62, and the highest localization score of 0.99 found in secretory pathways. The Computed Atlas of Surface Topography of Proteins was used to identify binding pockets and important residues that could serve as drug targets. Use of WEBnmα revealed protein dynamics by using normal mode analysis. Ligand and Receptor Dynamics used the Molecular Generalized Born Surface Area approach to determine the binding free energy of the protein. Gene enrichment analysis revealed that ovarian steroidogenesis, was the most significant enrichment pathway. Molecular dynamic simulations were executed for the best docked (COX-2-picrocrocin) complex, and the results displayed conformational alterations with more pronounced surface residue fluctuations in COX-2 with loss of the intra-protein hydrogen bonding network. The direct interaction of picrocrocin with various crucial amino-acid residues like GLN203, TYR385, HIS386 and 388, ASN382, and TRP387 causes modifications in these residues, which ultimately attenuates the activity of COX-2 protein. Conclusions: The present study revealed that picrocrocin was the most effective biomolecule and could be repurposed via computational approaches. However, various in vivo and in vitro observations are still needed.


Subject(s)
Crocus , Humans , Molecular Docking Simulation , Cyclooxygenase 2 , Network Pharmacology , Proteins , Inflammation
3.
BMC Plant Biol ; 23(1): 373, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37501129

ABSTRACT

BACKGROUND: Buckwheat (Fagopyrum spp.), belonging to the Polygonaceae family, is an ancient pseudo-cereal with high nutritional and nutraceutical properties. Buckwheat proteins are gluten-free and show balanced amino acid and micronutrient profiles, with higher content of health-promoting bioactive flavonoids that make it a golden crop of the future. Plant metabolome is increasingly gaining importance as a crucial component to understand the connection between plant physiology and environment and as a potential link between the genome and phenome. However, the genetic architecture governing the metabolome and thus, the phenome is not well understood. Here, we aim to obtain a deeper insight into the genetic architecture of seed metabolome in buckwheat by integrating high throughput metabolomics and genotyping-by-sequencing applying an array of bioinformatics tools for data analysis. RESULTS: High throughput metabolomic analysis identified 24 metabolites in seed endosperm of 130 diverse buckwheat genotypes. The genotyping-by-sequencing (GBS) of these genotypes revealed 3,728,028 SNPs. The Genome Association and Prediction Integrated Tool (GAPIT) assisted in the identification of 27 SNPs/QTLs linked to 18 metabolites. Candidate genes were identified near 100 Kb of QTLs, providing insights into several metabolic and biosynthetic pathways. CONCLUSIONS: We established the metabolome inventory of 130 germplasm lines of buckwheat, identified QTLs through marker trait association and positions of potential candidate genes. This will pave the way for future dissection of complex economic traits in buckwheat.


Subject(s)
Fagopyrum , Fagopyrum/genetics , Fagopyrum/metabolism , Genome-Wide Association Study , Metabolome , Flavonoids/metabolism , Seeds/genetics
4.
Cell Mol Neurobiol ; 43(6): 2437-2458, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36752886

ABSTRACT

Melatonin is ubiquitous molecule with wide distribution in nature and is produced by many living organisms. In human beings, pineal gland is the major site for melatonin production and to lesser extent by retina, lymphocytes, bone marrow, gastrointestinal tract, and thymus. Melatonin as a neurohormone is released into circulation wherein it penetrates all tissues of the body. Melatonin synthesis and secretion is supressed by light and enhanced by dark. Melatonin mostly exerts its effect through different pathways with melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2) being the predominant type of receptor that are mainly expressed by many mammalian organs. Melatonin helps to regulate sleep patterns and circadian rhythms. In addition, melatonin acts as an antioxidant and scavenges excessive free radicals generated in the body by anti-excitatory and anti-inflammatory properties. A multiple array of other functions are displayed by melatonin that include oncostatic, hypnotic, immune regulation, reproduction, puberty timing, mood disorders, and transplantation. Deficiencies in the production or synthesis of melatonin have been found to be associated with onset of many disorders like breast cancer and neurodegenerative disorders. Melatonin could be used as potential analgesic drug in diseases associated with pain and it has quite promising role there. In the past century, a growing interest has been developed regarding the wide use of melatonin in treating various diseases like inflammatory, gastrointestinal, cancer, mood disorders, and others. Several melatonin agonists have been synthesized and are widely used in disease treatment. In this review, an effort has been made to describe the biochemistry of melatonin along with its therapeutic potential in various diseases of humans.


Subject(s)
Melatonin , Pineal Gland , Animals , Humans , Melatonin/metabolism , Receptors, Melatonin/metabolism , Antioxidants/therapeutic use , Circadian Rhythm/physiology , Pineal Gland/metabolism , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...