Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
RSC Adv ; 12(6): 3708-3715, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35425401

ABSTRACT

Non-renewable chemical reagents are commonly used as dispersants or flocculants of phyllosilicate clay particles in several industrial fields such as water/wastewater treatment, food production, papermaking, and mineral processing. However, environmentally benign reagents are highly desired due to the non-biodegradability and negative impacts of synthetic reagents on aquatic life. In this work, the dispersion and flocculation behavior of sustainable polymers (anionic and cationic biopolymers) sourced from proteins and polysaccharides were studied in serpentine phyllosilicate suspensions using the following bench-scale tests: zeta potential, microflotation, settling and turbidity, and isotherm adsorption using total organic carbon. The anionic polysaccharide-based biopolymer pectin acted as a switchable biopolymer for serpentine. That is, it could switch from being an efficient flocculant at pH 7 to an effective dispersant at pH 10.

2.
J Colloid Interface Sci ; 615: 543-553, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35152074

ABSTRACT

Mitigation of colloid clay particles is critical during flotation and flocculation processes in mineral processing. Most organic and inorganic mitigation reagents have negative impacts on the environment and human health; therefore, biologically derived substances have been attracting attention as alternative reagents. Given the anisotropic nature of clay surfaces, it is imperative to understand reagent adsorption on the individual edge and basal plane surfaces of clays. Quartz crystal microbalance with dissipation (QCM-D) was used in this study to determine the adsorption characteristics of three biopolymers (the protein-based biopolymer, lysozyme, and protein and polysaccharide-based oligomers; protamine and pectin) on model surfaces of the anisotropic edge and basal planes of the clays (e.g., kaolinite and serpentine). SiO2 sensor representing the tetrahedral basal plane, Al2O3 and Mg(OH)2 representing the octahedral basal planes, AlSiO and MgSiO representing the edge faces of clays were used as model surfaces of clay minerals. For kaolinite, protamine adsorbed preferentially on the silica (SiO2) tetrahedral surface at pH 7 and on the alumina (Al2O3) surface at pH 10. Protamine adsorbed primarily on magnesium hydroxide (Mg(OH)2), representative of serpentine, at pH 7 and 10. Lysozyme adsorbed preferentially and irreversibly on the edge basal plane surfaces of both clays at pH 10, while it showed a higher affinity for octahedral surfaces (alumina and magnesium hydroxide) at pH 7. In contrast, pectin adsorbed strongly on the magnesium hydroxide, representative of the basal plane surface of serpentine. An adsorption study revealed that electrostatic attraction and/or hydrogen bonding mechanisms contributed to the adsorption of biopolymers on clay surfaces. This investigation provides a fundamental and practical understanding of biopolymer interactions with clay surfaces during selective flotation and flocculation.


Subject(s)
Quartz Crystal Microbalance Techniques , Silicon Dioxide , Adsorption , Biopolymers , Clay , Humans , Silicon Dioxide/chemistry , Surface Properties
3.
J Colloid Interface Sci ; 606(Pt 1): 860-872, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34425273

ABSTRACT

HYPOTHESIS: Sodium-montmorillonite (Na-Mt) particles are geometrically anisometric that carry a pH dependent anisotropic surface charge. Therefore, it should be possible to manipulate the particle-particle interaction of colloidal range Na-Mt suspensions through pH changes which in turn should alter the soft glassy dynamics of Na-Mt suspensions. EXPERIMENTS: Rheological experiments were used to probe the impact of pH mediated colloidal particle-particle interaction on the physical aging, linear viscoelastic response, and yield stress behavior of Na-Mt suspension. FINDINGS: The temporal evolution of the storage modulus (G') was stronger in the acid regime (pH < 9.5) than the base (pH ≥ 9.5) pH regime. Horizontal shifting of the aging curves in the acid and base regimes led to aging time-H+ concentration and aging time-OH- concentration superposition. An aging time-Na-Mt concentration superposition was also observed in both pH regimes. The critical stress associated with the viscosity bifurcation behavior increased linearly with G' but with different slopes for acid and base regime. We propose that positively charged patches on the Na-Mt particle edge merge with the characteristic surface as a function of H+ ions in the system. This leads to a strongly associated microstructure at low pH and a relatively weak but associated microstructure at natural pH, hence confirming the hypothesis.


Subject(s)
Suspensions , Clay , Hydrogen-Ion Concentration , Rheology , Viscosity
5.
Environ Res ; 202: 111688, 2021 11.
Article in English | MEDLINE | ID: mdl-34293307

ABSTRACT

Recurring combined sewer overflows (CSOs) can have a significant impact on the ecological condition of receiving water bodies. There are several structural measures, like adding retention basins and switching to low impact development solutions, that have been proposed to reduce the number of sewage overflows. Besides, several flow control strategies have been discussed in scientific literature that take advantage of the space within urban drainage networks, which is assumed to be adequate, for temporary storage. The adequacy of such storage space, however, is not a universally valid assumption as a large fraction of drainage networks frequently operate close to their design discharge. In this paper, we investigate the efficacy of flow control for a space-constrained drainage network. We employ a low-cost, heuristic real time control strategy with the use of flow control devices (FCDs) and available in-sewer space to reduce the magnitude of CSOs. We consider the performance of the proposed control strategy and discuss the effect of FCD location on CSO reduction. Our results, based on over 300 rainfall-event simulations, show that the flow control strategy using limited sewer capacity is more efficient during relatively small rainfall events, where the CSO is large enough to enable reduction using the chosen control rules. The CSO is reduced, to varying degrees, for around 80% of rainfall events with peak intensity between 10 and 20 mm h-1. For larger rainfall events, the flow control is more unstable in response to abrupt water release during control operation, which seems to be unavoidable because of the water accumulation effect and the transition to pressurized pipe flow in space-constrained networks. We also found that the flow control performance is highly sensitive to the FCD location - as it depends on the interplay of the peak rainfall intensity and the water level condition immediately upstream of the FCD. The efficacy of a location for flow control is determined by the unfilled capacity (i.e., effective in-sewer storage potential) in the pipe upstream of the FCD during the rainfall peak; furthermore, the location also has to be resistant to the water accumulation effect. Using our analysis, we substantiate two anticipated caveats to flow control strategies when the storage space is limited in a drainage network: diminished performance in CSO reduction and the appearance of additional control-related challenges, which are otherwise mitigated in more spacious networks.


Subject(s)
Rain , Sewage
6.
Postgrad Med ; 133(6): 651-664, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33900135

ABSTRACT

Treatment with icosapent ethyl 4 g/day, a highly purified and stable ethyl ester of eicosapentaenoic acid (EPA), demonstrated a significant reduction in atherosclerotic cardiovascular disease (ASCVD) events and death in REDUCE-IT. However, analyses of REDUCE-IT and meta-analyses have suggested that this clinical benefit is greater than can be achieved by triglyceride reduction alone. EPA therefore may have additional pleiotropic effects, including anti-inflammatory and anti-aggregatory mechanisms. EPA competes with arachidonic acid for cyclooxygenase and lipoxygenase, producing anti-inflammatory and anti-aggregatory metabolites rather than the more deleterious metabolites associated with arachidonic acid. Changing the EPA:arachidonic acid ratio may shift metabolic status from pro-inflammatory/pro-aggregatory to anti-inflammatory/anti-aggregatory. EPA also has antioxidant effects and increases synthesis of nitric oxide. Incorporation of EPA into phospholipid bilayers influences membrane structure and may help to prevent cardiac arrhythmias. Clinically, this may translate into improved vascular health, including regression of atherosclerotic plaque. Overall, EPA has a range of pleiotropic effects that contribute to a reduction in ASCVD.


Subject(s)
Atherosclerosis , Eicosapentaenoic Acid/analogs & derivatives , Plaque, Atherosclerotic , Anti-Inflammatory Agents/pharmacology , Atherosclerosis/immunology , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Eicosapentaenoic Acid/pharmacology , Humans , Lipid Regulating Agents/pharmacology , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/metabolism , Platelet Aggregation Inhibitors/pharmacology , Treatment Outcome
7.
Faraday Discuss ; 230(0): 172-186, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-33876167

ABSTRACT

A proof-of-concept for the carbonation-assisted processing of ultramafic nickel ores is presented. Carbonation converts serpentine, the primary gangue or undesirable mineral, to magnesite. It prevents slime coating of fine gangue minerals on pentlandite, the main nickel-bearing mineral, during froth flotation, and improves nickel recovery and concentrate grade. Additionally, CO2 is captured and stored in the form of solid carbonates, thus removing it from the atmosphere. Microflotation experiments demonstrated improved nickel recovery (61.2 to 87.4 wt%) and concentrate grade (20.6 to 24.7 wt%) in carbonated vs. uncarbonated systems. The mechanism behind the improved nickel flotation was investigated by zeta potential measurements, optical imaging microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. These analyses confirmed the absence of slime coating in the carbonated system under the flotation conditions tested. Finally, a preliminary techno-economic analysis was performed to evaluate the cost metrics of incorporating carbonation into nickel mineral processing.

8.
Carbohydr Polym ; 240: 116263, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32475555

ABSTRACT

Schizophyllan is a natural polysaccharide that has shown great potential as enhanced oil recovery (EOR) polymer for high-temperature, high-salinity reservoirs. Nevertheless, the adsorption behavior of schizophyllan over carbonate minerals remains ambiguous element towards its EOR applications. Here, we investigate the adsorption of schizophyllan on different carbonate minerals. The effect of mineral type, salinity, and background ions on adsorption is analyzed. Our results indicate the adsorption capacity is higher on calcite and dolomite compared to silica and kaolin and the adsorption capacity decreases with salinity. Moreover, the adsorption kinetics follows pseudo-second order mechanism regardless of the mineral type. Adsorption over calcite is diminished in presence of water structure making ions and enhanced in presence of structure breaking ion and in presence of urea. Gel permeation chromatography results reveal the preferential adsorption of longer chains. The adsorption over carbonate minerals proceed via complex formation between polymer molecule and mineral surface.


Subject(s)
Minerals/blood , Sizofiran/chemistry , Adsorption , Kinetics
9.
Water Res ; 143: 561-569, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30007259

ABSTRACT

Exponential wash-off models are the most widely used method to predict sediment wash-off from urban surfaces. In spite of many studies, there is still a lack of knowledge on the effect of external drivers such as rainfall intensity and surface slope on wash-off predictions. In this study, a more physically realistic "structure" is added to the original exponential wash-off model (OEM) by replacing the invariant parameters with functions of rainfall intensity and catchment surface slope, so that the model can better represent catchment and rainfall conditions without the need for lookup tables and interpolation/extrapolation. In the proposed new exponential model (NEM), two such functions are introduced. One function describes the maximum fraction of the initial load that can be washed off by a rainfall event for a given slope and the other function describes the wash-off rate during a rainfall event for a given slope. The parameters of these functions are estimated using data collected from a series of laboratory experiments carried out using an artificial rainfall generator, a 1 m2 bituminous road surface and a continuous wash-off measuring system. These experimental data contain high temporal resolution measurements of wash-off fractions for combinations of five rainfall intensities ranging from 33 to 155 mm/h and three catchment slopes ranging from 2 to 8%. Bayesian inference, which allows the incorporation of prior knowledge, is implemented to estimate parameter values. Explicitly accounting for model bias and measurement errors, a likelihood function representative of the wash-off process is formulated, and the uncertainty in the prediction of the NEM is quantified. The results of this study show: 1) even when the OEM is calibrated for every experimental condition, the NEM's performance, with parameter values defined by functions, is comparable to the OEM. 2) Verification indices for estimates of uncertainty associated with the NEM suggest that the error model used in this study is able to capture the uncertainty well.


Subject(s)
Models, Theoretical , Rain , Bayes Theorem , Calibration , Environmental Monitoring/methods , Geologic Sediments , Uncertainty , Water Movements
10.
Water Res ; 121: 290-301, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28558280

ABSTRACT

Observations of a hydrologic system response are needed to accurately model system behaviour. Nevertheless, often very few monitoring stations are operated because collecting such reference data adequately and accurately is laborious and costly. It has been recently suggested to use observations not only from dedicated flow meters but also from simpler sensors, such as level or event detectors, which are available more frequently but only provide censored information. Binary observations can be considered as extreme censoring. It is still unclear, however, how to use censored observations most effectively to learn about model parameters. To this end, we suggest a formal likelihood function that incorporates censored observations, while accounting for model structure deficits and uncertainty in input data. Using this likelihood function, the parameter inference is performed within the Bayesian framework. We demonstrate the implementation of our methodology on a case study of an urban catchment, where we estimate the parameters of a hydrodynamic rainfall-runoff model from binary observations of combined sewer overflows. Our results show, first, that censored observations make it possible to learn about model parameters, with an average decrease of 45% in parameter standard deviation from prior to posterior. Second, the inference substantially improves model predictions, providing higher Nash-Sutcliffe efficiency. Third, the gain in information largely depends on the experimental design, i.e. sensor placement. Given the advent of Internet of Things, we foresee that the plethora of censored data promised to be available can be used for parameter estimation within a formal Bayesian framework.


Subject(s)
Hydrology , Likelihood Functions , Bayes Theorem , Uncertainty
11.
Environ Sci Technol ; 51(5): 2538-2553, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28125222

ABSTRACT

The promise of collecting and utilizing large amounts of data has never been greater in the history of urban water management (UWM). This paper reviews several data-driven approaches which play a key role in bringing forward a sea change. It critically investigates whether data-driven UWM offers a promising foundation for addressing current challenges and supporting fundamental changes in UWM. We discuss the examples of better rain-data management, urban pluvial flood-risk management and forecasting, drinking water and sewer network operation and management, integrated design and management, increasing water productivity, wastewater-based epidemiology and on-site water and wastewater treatment. The accumulated evidence from literature points toward a future UWM that offers significant potential benefits thanks to increased collection and utilization of data. The findings show that data-driven UWM allows us to develop and apply novel methods, to optimize the efficiency of the current network-based approach, and to extend functionality of today's systems. However, generic challenges related to data-driven approaches (e.g., data processing, data availability, data quality, data costs) and the specific challenges of data-driven UWM need to be addressed, namely data access and ownership, current engineering practices and the difficulty of assessing the cost benefits of data-driven UWM.


Subject(s)
Rain , Water , Floods , Wastewater , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...