Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Lipids ; 41(1): 77-83, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16555475

ABSTRACT

The purpose of this investigation was to develop conditions for producing 2-monoricinoleoyl DAG. We used lipase-catalyzed hydrolysis of triricinolein to obtain 2-monoricinolein and thereafter synthesized 1,2(2,3)-diricinolein through esterification of 2-monoricinolein, using ricinoleic acid as the acyl donor. Five different 1,3-specific immobilized lipases were tested for the initial methanolysis reaction: Candida antarctica type B, Rhizomucor miehei, Rhizopus oryzae (ROL), Thermomyces lanuginosus, and Aspergillus niger. For the second esterification reaction, we investigated these five lipases plus Pseudomonas cepacia, Penicillium roquefortii, Candida rugosa, and Pseudomonas fluorescence. Toluene and diisopropyl ether (DIPE) were examined as reaction media at a water activity of 0.11. ROL in DIPE gave the highest yield of 2-monoricinolein from triricinolein, 78% after 3 h of reaction. The isolated 2-monoricinolein was esterified with ricinoleic acid for synthesis of 1,2(2,3)-diricinolein. ROL in DIPE gave the highest yield of 1,2(2,3)-diricinolein, 58% after 1 h of reaction, and NMR analysis showed that the purity was 97.2%. This methodology can be used for synthesizing radiolabeled 1,2(2,3)-diricinolein to study lipid biosynthesis in castor and other oilseeds.


Subject(s)
Diglycerides/chemical synthesis , Lipase/chemistry , Monoglycerides/chemistry , Catalysis , Chromatography, High Pressure Liquid , Esterification , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...