Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 33(1): 189-197, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34928623

ABSTRACT

Proteolysis is one of the most important protein post-translational modifications (PTMs) that influences the functions, activities, and structures of nearly all proteins during their lifetime. To facilitate the targeted identification of low-abundant proteolytic products, we devised a strategy incorporating a novel biotinylated reagent PFP (pentafluorophenyl)-Rink-biotin to specifically target, enrich and identify proteolytic N-termini. Within the PFP-Rink-biotin reagent, a mass spectrometry (MS)-cleavable feature was designed to assist in the unambiguous confirmation of the enriched proteolytic N-termini. The proof-of-concept study was performed with multiple standard proteins whose N-termini were successfully modified, enriched and identified by a signature ion (SI) in the MS/MS fragmentation, along with the determination of N-terminal peptide sequences by multistage tandem MS of the complementary fragment generated after the cleavage of MS-cleavable bond. For large-scale application, the enrichment and identification of protein N-termini from Escherichia coli cells were demonstrated, facilitated by an in-house developed NTermFinder bioinformatics workflow. We believe this approach will be beneficial in improving the confidence of identifying proteolytic substrates in a native cellular environment.


Subject(s)
Peptide Hydrolases , Protein Processing, Post-Translational/physiology , Proteins , Tandem Mass Spectrometry/methods , Biotin/chemistry , Computational Biology/methods , Fluorobenzenes/chemistry , Fluorocarbons/chemistry , Peptide Hydrolases/analysis , Peptide Hydrolases/metabolism , Phenols/chemistry , Proteins/chemistry , Proteins/metabolism , Proteolysis
2.
ACS Omega ; 3(10): 14229-14235, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-31458113

ABSTRACT

Modification of arginine residues using dicarbonyl compounds is a common method to identify functional or reactive arginine residues in proteins. Arginine undergoes several kinds of posttranslational modifications in these functional residues. Identifying these reactive residues confidently in a protein or large-scale samples is a very challenging task. Several dicarbonyl compounds have been utilized, and the most effective ones are phenylglyoxal and cyclohexanedione. However, tracking these reactive arginine residues in a protein or large-scale protein samples using a chemical labeling approach is very challenging. Thus, the enrichment of modified peptides will provide reduced sample complexity and confident mass-spectrometric data analysis. To pinpoint arginine-labeled peptide efficiently, we developed a novel arginine-selective enrichment reagent. For the first time, we conjugated an azide tag in a widely used dicarbonyl compound cyclohexanedione. This provided us the ability to enrich modified peptides using a bio-orthogonal click chemistry and the biotin-avidin affinity chromatography. We evaluated the reagent in several standard peptides and proteins. Three standard peptides, bradykinin, substance P, and neurotensin, were labeled with this cyclohexanedione-azide reagent. Click labeling of modified peptides was tested by spiking the peptides in a myoglobin protein digest. A protein, RNase A, was also labeled with the reagent, and after click chemistry and biotin-avidin affinity chromatography, we identified two selective arginine residues. We believe this strategy will be an efficient way for identifying functional and reactive arginine residues in a protein or protein mixtures.

3.
Anal Chim Acta ; 935: 197-206, 2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27543028

ABSTRACT

Arginine residues undergo several kinds of post-translational modifications (PTMs). These PTMs are associated with several inflammatory diseases, such as rheumatoid arthritis, atherosclerosis, and diabetes. Mass spectrometric studies of arginine modified proteins and peptides are very important, not only to identify the reactive arginine residues but also to understand the tandem mass spectrometry behavior of these peptides for assigning the sequences unambiguously. Herein, we utilize tandem mass spectrometry to report the performance of two widely used arginine labeling reagents, 1,2-cyclohexanedione (CHD) and phenylglyoxal (PG) with several arginine containing peptides and proteins. Time course labeling studies were performed to demonstrate the selectivity of the reagents in proteins or protein digests. Structural studies on the proteins were also explored to better understand the reaction sites and position of arginine residues. We found CHD showed better labeling efficiencies compared to phenylglyoxal. Reactive arginine profiling on a purified albumin protein clearly pointed out the cellular glycation modification site for this protein with high confidence. We believe these detailed mass-spectrometric studies will provide significant input to profile reactive arginine residues in large-scale studies; therefore, targeted proteomics can be performed to the short listed reactive sites for cellular arginine modifications.


Subject(s)
Arginine/analysis , Cyclohexanones/chemistry , Phenylglyoxal/chemistry , Serum Albumin/chemistry , Animals , Cattle , Humans , Mass Spectrometry , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...