Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4731, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413688

ABSTRACT

The fruit fly, Drosophila melanogaster, is an important experimental model to address central questions in neuroscience at an organismic level. However, imaging of neural circuits in intact fruit flies is limited due to structural properties of the cuticle. Here we present a novel approach combining tissue clearing, ultramicroscopy, and data analysis that enables the visualisation of neuronal networks with single-cell resolution from the larval stage up to the adult Drosophila. FlyClear, the signal preserving clearing technique we developed, stabilises tissue integrity and fluorescence signal intensity for over a month and efficiently removes the overall pigmentation. An aspheric ultramicroscope set-up utilising an improved light-sheet generator allows us to visualise long-range connections of peripheral sensory and central neurons in the visual and olfactory system. High-resolution 3D reconstructions with isotropic resolution from entire GFP-expressing flies are obtained by applying image fusion from orthogonal directions. This methodological integration of novel chemical, optical, and computational techniques allows a major advance in the analysis of global neural circuit organisation.


Subject(s)
Aging/physiology , Drosophila melanogaster/cytology , Microscopy/methods , Nervous System/cytology , Optics and Photonics/methods , Animals , Imaging, Three-Dimensional , Larva/cytology , Pupa/cytology
2.
J Biophotonics ; 11(6): e201700213, 2018 06.
Article in English | MEDLINE | ID: mdl-29457696

ABSTRACT

Based on the modal analysis method, we developed a model that describes the output beam of a diode-pumped solid state (DPSS) laser emitting a multimode beam. Measuring the output beam profile in the near field and at the constructed far field the individual modes, their respective contributions, and their optical parameters are determined. Using this information, the beam is optically reshaped into a quasi-Gaussian beam by the interference and superposition of the various modes. This process is controlled by a mode modulator unit that includes different meso-aspheric elements and a soft-aperture. The converted beam is guided into a second optical unit comprising achromatic-aspheric elements to produce a thin light sheet for ultramicroscopy. We found that this light sheet is markedly thinner and exhibits less side shoulders compared with a light sheet directly generated from the output of a DPSS multimode laser.


Subject(s)
Lasers, Solid-State , Optical Imaging/instrumentation , Animals , Brain/cytology , Drosophila melanogaster , Mice , Neoplasms/diagnostic imaging , Neoplasms/pathology , Normal Distribution
3.
Microsc Res Tech ; 81(9): 929-935, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28000307

ABSTRACT

Here, we present an optically optimized system for static ultramicroscopy imaging technique. The unit for generating an ultra-thin light sheet employs aspheric and meso-optical elements (meso-aspheric system). An analytical as well as an experimental comparison between the light sheet produced by the standard system (using a rectangular slit aperture and one cylindrical lens) and the one produced by our latest optimized system, which converts a symmetrical Gaussian beam into an ultra-thin light sheet is presented. Using the new light sheet in combination with our objective equipped with a modulator unit to compensate the refractive index mismatch between air and mediums with indices of 1.45-1.56, we present high resolution images of various biological samples that were chemically cleared using different methods. They demonstrate a marked improvement in quality, contrast and resolution.

4.
Neurophotonics ; 2(4): 041407, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26730396

ABSTRACT

We present an overview of the ultramicroscopy technique we developed. Starting from developments 100 years ago, we designed a light sheet microscope and a chemical clearing to image complete mouse brains. Fluorescence of green fluorescent protein (GFP)-labeled neurons in mouse brains could be preserved with our 3DISCO clearing and high-resolution three-dimensional (3-D) recordings were obtained. Ultramicroscopy was also used to image whole mouse embryos and flies. We improved the optical sectioning of our light sheet microscope by generating longer and thinner light sheets with aspheric optics. To obtain high-resolution images, we corrected available air microscope objectives for clearing solutions with high refractive index. We discuss how eventually super resolution could be realized in light sheet microscopy by applying stimulated emission depletion technology. Also the imaging of brain function by recording of mouse brains expressing cfos-GFP is discussed. Finally, we show the first 3-D recordings of human breast cancer with light sheet microscopy as application in medical diagnostics.

5.
PLoS One ; 9(12): e114149, 2014.
Article in English | MEDLINE | ID: mdl-25463047

ABSTRACT

Tissue clearing allows microscopy of large specimens as whole mouse brains or embryos. However, lipophilic tissue clearing agents as dibenzyl ether limit storage time of GFP-expressing samples to several days and do not prevent them from photobleaching during microscopy. To preserve GFP fluorescence, we developed a transparent solid resin formulation, which maintains the specimens' transparency and provides a constant signal to noise ratio even after hours of continuous laser irradiation. If required, high-power illumination or long exposure times can be applied with virtually no loss in signal quality and samples can be archived for years.


Subject(s)
Brain/metabolism , Green Fluorescent Proteins/chemistry , Photobleaching , Tissue Embedding/methods , Animals , Brain/pathology , Brain/radiation effects , Green Fluorescent Proteins/analysis , Lasers , Mice , Microscopy/methods , Resins, Synthetic , Tissue Preservation
SELECTION OF CITATIONS
SEARCH DETAIL
...