Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(12): e2116264119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35286202

ABSTRACT

SignificanceWe provide the first assessment of aboveground live tree biomass in a mixed conifer forest over the late Holocene. The biomass record, coupled with local Native oral history and fire scar records, shows that Native burning practices, along with a natural lightning-based fire regime, promoted long-term stability of the forest structure and composition for at least 1 millennium in a California forest. This record demonstrates that climate alone cannot account for observed forest conditions. Instead, forests were also shaped by a regime of frequent fire, including intentional ignitions by Native people. This work suggests a large-scale intervention could be required to achieve the historical conditions that supported forest resiliency and reflected Indigenous influence.


Subject(s)
Conservation of Natural Resources , Fires , California , Forests , Humans , Trees
2.
Proc Natl Acad Sci U S A ; 113(4): 856-61, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26504219

ABSTRACT

Loss of megafauna, an aspect of defaunation, can precipitate many ecological changes over short time scales. We examine whether megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We compare ecological impacts of late-Quaternary megafauna extinction in five American regions: southwestern Patagonia, the Pampas, northeastern United States, northwestern United States, and Beringia. We find that major ecological state shifts were consistent with expectations of defaunation in North American sites but not in South American ones. The differential responses highlight two factors necessary for defaunation to trigger lasting ecological state shifts discernable in the fossil record: (i) lost megafauna need to have been effective ecosystem engineers, like proboscideans; and (ii) historical contingencies must have provided the ecosystem with plant species likely to respond to megafaunal loss. These findings help in identifying modern ecosystems that are most at risk for disappearing should current pressures on the ecosystems' large animals continue and highlight the critical role of both individual species ecologies and ecosystem context in predicting the lasting impacts of defaunation currently underway.


Subject(s)
Ecosystem , Extinction, Biological , Mammals , Trees , Animal Distribution , Animals , Behavior, Animal , Biodiversity , Body Size , Climate Change , Fires/history , Fossils , Herbivory , History, Ancient , North America , Paleontology , Plant Dispersal , Pollen , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...