Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hematother Stem Cell Res ; 10(2): 247-60, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11359672

ABSTRACT

Relapse after adjuvant chemotherapy or high-dose chemotherapy with stem cell transplant for high-risk breast cancer remains high and new strategies that provide additional antitumor effects are needed. This report describes methods to generate highly effective HER2/neu-specific cytotoxic T cells by arming activated T cells with anti-CD3 x anti-HER2/neu bispecific antibody (BsAb). OKT3 and 9184 (anti-HER2) monoclonal antibodies (mAb) were conjugated and used to arm T cells that were subsequently tested in binding, cytotoxicity, and cytokine secretion assays. Armed T cells aggregated and specifically killed HER2/neu(+) breast cancer cells. Cytotoxicity emerged after 6 days of culture, was higher in armed T cells than unarmed T cells at all effector to target ratios (E/T) tested, and increased as the arming dose was increased. At an E/T of 20:1, the mean cytotoxicity of armed activated T cells (ATC) from 10 normal subjects increased by 59 +/- 11% (+/-SD) over that seen in unarmed ATC (p < 0.001) and the mean cytotoxicity of armed ATC from 6 cancer patients increased by 32 +/- 9% above that seen for unarmed ATC (p < 0.0004). After arming, the BsAb persisted on ATC up to 72 h and armed ATC continued to be cytotoxic up to 54 h. The amount of interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted was 1699, 922, and 3092 pg/ml/10(6) cells per 24 h, respectively, when armed T cells were exposed to a HER2/neu(+) breast carcinoma cell line. These studies show the feasibility and clinical adaptability of this approach for generating large numbers of anti-HER2-specific, cytotoxic T cells for clinical trials.


Subject(s)
Antibodies, Bispecific/toxicity , Cytotoxicity, Immunologic , Muromonab-CD3/immunology , Receptor, ErbB-2/immunology , T-Lymphocytes/immunology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Survival/drug effects , Female , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Humans , Interferon-gamma/biosynthesis , Lymphocyte Activation , Tumor Cells, Cultured , Tumor Necrosis Factor-alpha/biosynthesis
2.
In Vitro Cell Dev Biol Anim ; 33(5): 344-51, 1997 May.
Article in English | MEDLINE | ID: mdl-9196892

ABSTRACT

The aim of this study was to test the versatility of a new basal cell culture medium, GTSF-2. In addition to traditional growth-factors, GTSF-2 contains a blend of three sugars (glucose, galactose, and fructose) at their physiological levels. For these studies, we isolated normal endothelial cells from human, bovine, and rat large blood vessels and microvessels. In addition, GTSF-2 was also tested as a replacement for high-glucose-containing medium for PC12 pheochromocytoma cells and for other, transformed cell lines. The cell growth characteristics were assessed with a novel cell viability and proliferation assay, which is based on the bioreduction of the fluorescent dye, Alamar Blue. After appropriate calibration, the Alamar Blue assay was found to be equivalent to established cell proliferation assays. Alamar Blue offers the advantage that cell proliferation can be measured in the same wells over an extended period of time. For some of the cell types (e.g., endothelial cells isolated from the bovine aorta, the rat adrenal medulla, or the transformed cells), proliferation in unmodified GTSF-2 was equivalent to that in the original culture media. For others cell types (e.g., human umbilical vein endothelial cells and PC12 cells), GTSF-2 proved to be a superior growth medium, when supplemented with simple additives, such as endothelial cell growth supplement (bFGF) or horse serum. Our results suggest that GTSF-2 is a versatile basal medium that will be useful for studying organ-specific differentiation in heterotypic coculture studies.


Subject(s)
Cell Culture Techniques , Culture Media , Oxazines , Xanthenes , Animals , Cattle , Cell Culture Techniques/methods , Cell Division , Cell Line, Transformed , Cells, Cultured , Coloring Agents , Endothelium, Vascular/cytology , Humans , PC12 Cells , Rats
3.
ASAIO J ; 42(5): M480-7, 1996.
Article in English | MEDLINE | ID: mdl-8944927

ABSTRACT

The authors investigated the multi-step mechanism of healing after cardiomyoplasty, focusing on the process of angiogenesis. The authors contend that enhancement of angiogenesis and prevention of ischemia-reperfusion injuries immediately after muscle mobilization will be effective in improving cardiomyoplasty results. After cardiomyoplasty, autologous biologic glue (ABG) was administered between the latissimus dorsi muscle (LDM) and myocardium. By 2 months, a new pseudo interlayer was present that bridged the gap between the LDM and myocardium. Neovascularization was visible in the form of numerous small capillaries. Marked degeneration of the LDM was noted, possibly caused by muscle ischemia-reperfusion damage after mobilization. Pockets were created of ischemic and nonischemic LDM to test for angiogenesis. One was left free of ABG (control); one received ABG only; one received ABG and pyrrolostatin. Some of the capillaries were large and had erythrocytes inside. biopsy samples showed 9.4 +/- 1.9% of the sample was occupied by blood vessels (compared with 3.6 +/- 0.7% in control muscle). These preliminary studies prove the feasibility of the authors' concept and provide evidence that angiogenesis can accelerate the healing process and provide an organic bridge between the LDM and myocardium after cardiomyoplasty.


Subject(s)
Adhesives , Cardiomyoplasty/methods , Myocardial Ischemia/surgery , Neovascularization, Physiologic , Adhesives/isolation & purification , Animals , Capillaries/growth & development , Cardiomyoplasty/adverse effects , Disease Models, Animal , Evaluation Studies as Topic , Myocardial Ischemia/pathology , Myocardial Reperfusion Injury/prevention & control , Sheep
4.
ASAIO J ; 42(5): M487-94, 1996.
Article in English | MEDLINE | ID: mdl-8944928

ABSTRACT

Thromboembolic complications remain a major problem associated with the long-term clinical use of cardiac prostheses. A promising approach toward resolving this predicament is lining the blood contacting surfaces with a functional monolayer of endothelial cells (EC). In developing an endothelialized cardiac prosthesis, the authors in the past focused on establishing a confluent EC monolayer on the luminal surface of ventricular blood sacs. In this study, the authors concentrated on exposing the post confluent monolayers to the dynamic conditions inside a beating ventricle. The cells, derived from either bovine aortae or jugular veins, were grown to post confluence inside fully assembled ventricles on fibronectin or plasma cryoprecipitate coated, textured surfaces. After 11 days of culturing under static conditions, the endothelialized ventricles were connected to a mock loop that was run for 6 and 24 hr at 60 bpm and mean flow rate of 3.2 L/min. The status of the monolayer was evaluated by Alamar Blue assay before and after each run, and the extent of surface coverage was determined visually using bright field microscopic study after cell staining with KMnO4 and toluidine blue. In addition, morphometric information on cells/polyurethane surface was obtained with a scanning electron microscope. After 6 hr of pumping, cell staining revealed signs of moderate cell loss in fibronectin coated blood sacs, whereas in cryoprecipitate coated bladders the signs of denudation were marginal. In seven ventricles operated for 24 hr, Alamar Blue measurements indicated 35 +/- 16% of cell loss from monolayers established on fibronectin coating, but only 4.8 +/- 6.25% on cryoprecipitate. Thus, the current study demonstrates the feasibility of maintaining an intact endothelial surface in a beating ventricular prosthesis and indicates that the integrity of the endothelial lining is dependent upon a proper choice of surface macrostructure and protein coating.


Subject(s)
Endothelium, Vascular/cytology , Heart-Assist Devices , Animals , Blood Proteins , Cattle , Cells, Cultured , Evaluation Studies as Topic , Fibronectins , Heart-Assist Devices/adverse effects , Humans , In Vitro Techniques , Microscopy, Electron, Scanning , Prosthesis Design , Surface Properties , Thromboembolism/etiology , Thromboembolism/prevention & control , Time Factors
5.
ASAIO J ; 40(3): M319-24, 1994.
Article in English | MEDLINE | ID: mdl-8555532

ABSTRACT

Successful establishment of a durable endothelial cell (EC) monolayer inside a ventricular blood sac requires homogeneous coverage of the entire luminal surface with attached cells. For this purpose, a new device was developed that slowly rotates a fully assembled cardiac prosthesis with three degrees of freedom. We seeded ECs derived from human adipose tissue at a density of approximately 3.5 x 10(4) cells/cm2 onto the surfaces of polyurethane-made blood sacs and "ersatz" bladders (consisting of T-25 tissue culture flasks). The kinetics of cell attachment, spreading, and proliferation were determined using video microscopy combined with image analysis and cell viability assays. After 60 min of seeding at 5-10 rotations/hr, the plating efficiency inside the blood sacs was 35.7 +/- 11%, with cell viability remaining approximately 90 +/- 5%. After 3 hr, when the plating efficiency reached a plateau (approximately 70%), the rotation was stopped and the ECs were allowed to spread and proliferate under static conditions. Within 48 hr, the entire luminal surface was evenly covered by a confluent EC monolayer. Our long-term studies show that with a proper feeding schedule, such an EC monolayer can be maintained intact in vitro for more than 2 weeks.


Subject(s)
Endothelium, Vascular/cytology , Heart-Assist Devices , Adipose Tissue/blood supply , Biomedical Engineering , Blood , Cell Adhesion , Cell Division , Cells, Cultured , Evaluation Studies as Topic , Humans , In Vitro Techniques , Microscopy, Electron, Scanning , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...