Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 22(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667767

ABSTRACT

Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture. This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc system. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0), 5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg-1 of CH for 8 weeks. Parameters were assessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at 10 mL·kg-1 significantly improved weight gain (WG) and specific growth rate (SGR) compared to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by 10 and 20 mL·kg-1 CH compared to the control. However, 40 mL·kg-1 CH caused detrimental impacts on the villi and muscular layer. CH supplementation, especially 5-10 mL·kg-1, increased liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α) compared to the control group. Overall, dietary CH at 10 mL·kg-1 can effectively promote growth, intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in biofloc systems.


Subject(s)
Animal Feed , Aquaculture , Chitosan , Cichlids , Intestines , Animals , Chitosan/pharmacology , Cichlids/growth & development , Cichlids/immunology , Cichlids/metabolism , Intestines/drug effects , Aquaculture/methods , Dietary Supplements , Antioxidants/pharmacology , Antioxidants/metabolism , Gene Expression/drug effects
2.
Fish Shellfish Immunol ; 131: 1136-1143, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36122638

ABSTRACT

This study aimed to investigate the effects of mango peel powder (MGPP) on growth, innate immunity, and immune-antioxidant related gene expression of Nile tilapia reared under biofloc system. Three hundred Nile tilapia (average weight 14.78 ± 0.05 g) were distributed into 15 fiber tanks (300 L per tank) assigned to five treatments in triplication. Fish were fed basal diet containing different levels MGPP as follows: 0 (MGPP0: control), 6.25 (MGPP 6.25), 12.5 (MGPP 12.25), 25 (MGPP 25), and 50 (MGPP 50) g kg-1 diet for 8 weeks. Specific growth rate (SGR), weight gain (WG), final weight (FW), feed conversion ratio (FCR), skin mucus of lysozyme (SMLA), and peroxidase activities (SMPA), serum of lysozyme (SL) and peroxidase (SP) were measured every for weeks; while immune-antioxidant-related gene expressions were determined after 8 weeks post-feeding. The results indicated that MGPP 25 diet resulted in higher SGR, WG, FW, and FCR but no significant differences among treatments were noticed. In terms of immune responses, lysozyme and peroxidase activities in mucus and serum were significantly higher in MGPP 12.5 and MGPP 25 diets against the control. Similarly, significant up-regulation of IL-1 and IL-8 gene expressions was observed in fish fed MGPP 25 against the control. However, no significant differences in LBP, GSTa, GPX, and GSR among treatments were observed. Overall, dietary inclusion of MGPP 25 significantly enhanced immune response and immune related gene expressions but not growth performance and antioxidant gene expressions. The results implied that MGPP can be potentially used as an immunostimulants in Nile tilapia culture.


Subject(s)
Cichlids , Fish Diseases , Mangifera , Animals , Antioxidants/metabolism , Mangifera/metabolism , Muramidase/genetics , Powders , Animal Feed/analysis , Disease Resistance , Diet/veterinary , Aquaculture , Peroxidases , Gene Expression , Dietary Supplements
3.
Fish Shellfish Immunol ; 128: 604-611, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35995373

ABSTRACT

This study investigated the effects of dietary supplementation with anthocyanin extracted from black rice bran (AR) on the growth rate, immunological response, and expression of immune and antioxidant genes in Nile tilapia raised in an indoor biofloc system. A total of 300 Nile tilapia fingerlings (15.14 ± 0.032 g) were maintained in 150 L tanks and acclimatized for two weeks. Five experimental AR diets (0, 1, 2, 4, and 8 g kg-1) with various anthocyanin doses were used to feed the fish. We observed that the growth and feed utilization of fish fed with different dietary AR levels increased significantly after eight weeks (p < 0.05). In addition, the serum immunity of fish fed AR diets was much greater than that of those fed non-AR diets (p < 0.05). However, there were little or no difference in between fish fed AR enriched diets and the control AR-free diet (p > 0.05). After eight weeks, fish fed AR-supplemented diets had significantly higher mRNA transcript levels in immune (interleukin [IL]-1, IL-8, and liposaccharide-binding protein [LBP]) and antioxidant (glutathione transferase-alpha [GST-α] and glutathione reductase [GSR]) genes compared to control fish fed the AR-free diet, with the greatest enhancement of mRNA transcript levels (in the case of IL-8 by up to about 5.8-fold) in the 4 g kg-1 AR diet. These findings suggest that dietary inclusion of AR extract from black rice bran at 4-8 g kg-1 could function as a herbal immunostimulant to enhance growth performance, feed consumption, and immunity in Nile tilapia.


Subject(s)
Cichlids , Fish Diseases , Oryza , Adjuvants, Immunologic/metabolism , Animal Feed/analysis , Animals , Anthocyanins/metabolism , Antioxidants/metabolism , Aquaculture , Diet/veterinary , Dietary Supplements , Gene Expression , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Interleukin-8 , Oryza/genetics , Plant Extracts/metabolism , RNA, Messenger/metabolism
4.
Fish Shellfish Immunol ; 124: 134-141, 2022 May.
Article in English | MEDLINE | ID: mdl-35367378

ABSTRACT

This study aimed to evaluate the effects of rambutan peel powder (RP) on growth, skin mucosal and serum immunities, and immune-related gene expression of striped catfish (Pangasianodon hypophthalmus) reared in a biofloc system. Three hundred fingerlings (17.14 ± 0.12 g fish-1) were randomly selected and assigned to five treatments corresponding to five diets: 0 g kg-1 (control - RP0); 10 g kg-1 (RP10); 20 g kg-1 (RP20); 40 g kg-1 (RP40), and 80 g kg-1 (RP80) for 8 weeks. At weeks 4 and 8 post-feeding, growth, skin mucus, and serum immunity parameters were determined, whereas immune-related gene expressions were performed at the end of the feeding trial. Based on the results, skin mucus lysozyme (SML) and skin mucus peroxidase (SMP) were significantly higher in fish fed the RP diets compared to the control diet (P < 0.05). The highest SML and SMP levels were observed in fish fed RP40 diet, followed by RP20, RP80, RP10, and RP0. Fish-fed RP diets had higher serum lysozyme and serum peroxidase activities, with the highest value found in the RP40 diet (P < 0.05), followed by RP20, RP80, and RP10. Similarly, immune-related gene expressions (IFN2a, IFN2b, and MHCII) in the liver were significantly up-regulated in fish fed RP40. Up-regulation (P < 0.05) of IL-1, IFN2a, IFN2b, and MHCII genes was also observed in fish intestines, with the highest values observed in fish fed RP40 diet, followed by RP10, RP20, RP80, and RP0. Fish-fed diet RP diets also showed enhanced growth and FCR compared to the control, with the highest values observed in fish fed diet RP40. However, no significant differences in survival rates were found among diets. In conclusion, dietary inclusion of RP at 40 g kg-1 resulted in better growth performance, immune response, and immune related gene expressions of striped catfish (Pangasianodon hypophthalmus).


Subject(s)
Catfishes , Fish Diseases , Sapindaceae , Animal Feed/analysis , Animals , Aquaculture , Diet/veterinary , Dietary Supplements , Gene Expression , Immunity , Muramidase , Peroxidases , Powders
5.
Fish Shellfish Immunol ; 123: 460-468, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35339660

ABSTRACT

This study evaluates the effects of longan seed powder (LS) on the growth performance, immunological response, and immune-antioxidant related gene expression of Nile tilapia (Oreochromis niloticus). Three hundred fish (13.82 ± 0.06 g) were divided into five experiments and fed 5 diets, including the basal diet (control without LS) and basal diet containing 10 (LS10), 20 (LS20), 40 (LS40), and 80 (LS80) g kg-1 LS for eight weeks. A completely randomized design (CRD) with three replications was utilised. The growth performance and immune response were measured at weeks 4 and 8 post feeding, while the gene expressions were determined at the end of the feeding trial. The results revealed that administration of LS could significantly (P < 0.05) improve specific growth rate (SGR), weight gain (WG), and feed conversion ratio (FCR) in Nile tilapia as compared to the control group. However, no significant differences (P > 0.05) were observed in survival rates among treatments. LS-supplemented diets showed enhanced serum peroxidase activity (SPA), serum lysozyme activity (SLA), skin mucus lysozyme activity (MLA), and skin mucus peroxidase activity (MPA) at weeks 4 and 8 post-feeding, with the highest values observed in the LS20 diet (P < 0.05). Additionally, LS-supplemented diets significantly up-regulated (P < 0.05) immune and antioxidant related gene expressions (IL1, IL8, LBP, GSTa, GPX, and GSR) in the liver and intestine, with highest values observed in the LS20 treatment. The present results confirmed the beneficial effects of LS as a functional feed additive and immunostimulant for Nile Tilapia culture in a biofloc system.


Subject(s)
Cichlids , Fish Diseases , Streptococcal Infections , Animal Feed/analysis , Animals , Antioxidants/metabolism , Aquaculture , Diet/veterinary , Dietary Supplements/analysis , Disease Resistance , Gene Expression , Muramidase/metabolism , Peroxidase/metabolism , Powders , Sapindaceae , Seeds
6.
Fish Shellfish Immunol ; 122: 215-224, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35063605

ABSTRACT

An eight-week feeding trial was carried out to determine the effects of rambutan seed (RS) as a feed additive on the growth, skin mucus, serum immune parameters, and gene expression of Nile tilapia (Oreochromis niloticus) raised under a biofloc system. Nile tilapia fingerlings (14.77 ± 0.80 g fish-1) were fed five experimental diets containing 0, 5, 10, 20, and 40 g kg-1 of RS, corresponding to five treatments (RS0, RS5, RS10, RS20, and RS40) with three replications per treatment. The results showed that fish consuming the RS10 and RS20 diets presented a substantial (P < 0.05) improvement in specific growth rate (SGR), weight gain (WG), and feed conversion ratio (FCR) after eight weeks. The highest values were recorded in the RS10 diet; however, there were no significant (P > 0.05) differences exhibited in the fish survival rates between treatments. The RS supplementation diets demonstrated greater immunological parameters, particularly skin mucus and serum immune responses (P < 0.05), than that of the control after eight the eight-week feeding trial. The highest level was seen in fish fed the RS10; followed by the RS20, RS40 (P > 0.05), and RS5 diets. Regarding gene expressions, IL1, IL8, LBP, GSTa, and GSR genes were significantly up-regulated in fish provided the RS10 diet in comparison to the control and other supplemented diets (P < 0.05). However, no significant up-regulation was found in these genes among the RS0, RS5, RS20, and RS40 diets, with the exception of the GPX gene. Similarly, up-regulation of IL-8, LBP, GSTa, GPX, and GSR were noted in fish fed the RS10 diet (P < 0.05). Notably, no significant differences were evident in these genes among the RS5, RS20, and RS40 diets. In conclusion, fish fed RS10 (10 g kg-1) significantly enhanced growth, skin mucus, serum immunities, and immune-antioxidants related gene expressions of Nile tilapia raised under biofloc system.


Subject(s)
Cichlids , Fish Diseases , Sapindaceae , Streptococcal Infections , Animal Feed/analysis , Animals , Antioxidants , Aquaculture , Diet/veterinary , Dietary Supplements/analysis , Disease Resistance , Gene Expression , Seeds
7.
Animals (Basel) ; 11(7)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34359162

ABSTRACT

We investigated, herein, the effects of dietary inclusion of sugarcane bagasse powder (SB) on Nile tilapia development, mucosal and serum immunities, and relative immune and antioxidant genes. Fish (15.12 ± 0.04 g) were provided a basal diet (SB0) or basal diet incorporated with SB at 10 (SB10), 20 (SB20), 40 (SB40), or 80 (SB80) g kg-1 for 8 weeks. Our results demonstrated that the dietary incorporation of sugarcane bagasse powder (SB) at 20 and 40 g kg-1 significantly ameliorated FW, WG, and SGR as opposed to fish fed basal, SB10, and SB80 diets. However, no significant changes in FCR and survivability were observed between the SB supplemented diets and the control (basal diet). The mucosal immunity exhibited significantly higher SMLA and SMPA activities (p < 0.005) in fish treated with SB diets after eight weeks. The highest SMLA and SMPA levels were recorded in fish fed SB80 followed by SB20, SB40, and SB10, respectively. For serum immunity, fish fed SB incorporated diets significantly ameliorated SL and RB levels (p < 0.05) compared with the control. However, SP was not affected by the inclusion of SB in any diet throughout the experiment. The expression of IL1, IL8, LBP, GSTa, GPX, and GSR genes in the fish liver was significantly increased in fish fed the SB20 and SB10 diets relative to the basal diet fed fish (p < 0.05); whereas only the IL8, LBP, and GPX genes in the intestines were substantially augmented via the SB20 and SB80 diets (p < 0.05). IL1 and GSR were not influenced by the SB incorporated diets (p > 0.05). In summary, sugarcane bagasse powder (SB) may be applied as a feed additive to improve growth performance, immune response, and immune and antioxidant-related gene expression in Nile tilapia.

SELECTION OF CITATIONS
SEARCH DETAIL
...