Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1346574, 2024.
Article in English | MEDLINE | ID: mdl-38601305

ABSTRACT

A novel endophytic actinomycete, strain MEP2-6T, was isolated from scab tissues of potato tubers collected from Mae Fag Mai Sub-district, San Sai District, Chiang Mai Province, Thailand. Strain MEP2-6T is a gram-positive filamentous bacteria characterized by meso-diaminopimelic acid in cell wall peptidoglycan and arabinose, galactose, glucose, and ribose in whole-cell hydrolysates. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and hydroxy-phosphatidylethanolamine were the major phospholipids, of which MK-9(H6) was the predominant menaquinone, whereas iso-C16:0 and iso-C15:0 were the major cellular fatty acids. The genome of the strain was 10,277,369 bp in size with a G + C content of 71.7%. The 16S rRNA gene phylogenetic and core phylogenomic analyses revealed that strain MEP2-6T was closely related to Amycolatopsis lexingtonensis NRRL B-24131T (99.4%), A. pretoriensis DSM 44654T (99.3%), and A. eburnea GLM-1T (98.9%). Notably, strain MEP2-6T displayed 91.7%, 91.8%, and 87% ANIb and 49%, 48.8%, and 35.4% dDDH to A. lexingtonensis DSM 44653T (=NRRL B-24131T), A. eburnea GLM-1T, and A. pretoriensis DSM 44654T, respectively. Based on phenotypic, chemotaxonomic, and genomic data, strain MEP2-6T could be officially assigned to a novel species within the genus Amycolatopsis, for which the name Amycolatopsis solani sp. nov. has been proposed. The type of strain is MEP2-6T (=JCM 36309T = TBRC 17632T = NBRC 116395T). Amycolatopsis solani MEP2-6T was strongly proven to be a non-phytopathogen of potato scab disease because stunting of seedlings and necrotic lesions on potato tuber slices were not observed, and there were no core biosynthetic genes associated with the BGCs of phytotoxin-inducing scab lesions. Furthermore, comparative genomics can provide a better understanding of the genetic mechanisms that enable A. solani MEP2-6T to adapt to the plant endosphere. Importantly, the strain smBGCs accommodated 33 smBGCs encoded for several bioactive compounds, which could be beneficially applied in the fields of agriculture and medicine. Consequently, strain MEP2-6T is a promising candidate as a novel biocontrol agent and antibiotic producer.

2.
Article in English | MEDLINE | ID: mdl-38315309

ABSTRACT

Potato scab is a common potato tuber disease that affects quality and cost in the marketplace, shortening storage, and increasing the chance for secondary infection. The tubers with disease severity of 1 to 4 are accepted and stored in potato storage for cheap selling in Thailand. However, there are few studies of the bacterial community of the scabby tuber during storage. Thus, we aim to elucidate the diversity, structure, and function of the bacterial community of 30-day storage potato scabby tubers stored in different temperatures using 16S amplicon metagenomic sequencing. Bacterial communities of storage potato scabby tubers (Spunta cultivar) collected from different storage temperatures, 4 °C (MEP1) and 6 °C (MEP2), were characterized using 16S rRNA amplicon metagenomic sequencing. The alpha-diversity abundance in the bacteriome of the scabby tubers stored at 6 °C was higher than in those stored at 4 °C. Actinobacteria (34.7%) was a dominant phylum in MEP1, while Proteobacteria (39.9%) was predominant in MEP2. The top 10 genera of both communities were Rhizobium group, Streptomyces, Pectobacterium, Ruminococcus, Cellulomonas, Promicromonospora, Prevotella, Enterobacter, Pedobacter, and Paenarthrobacter. Moreover, functional profile prediction of both communities reveals essential genes in the pathosystem: nos, bglA, and cebEFG-msiK for potato scab disease and phc and peh operons for rot disease. Our findings are the first study to explore details of the bacteriome of the accepted potato scabby tubers for selling during storage in Thailand and strongly indicate that although potatoes were stored at low temperatures, diseases still occur by secondary pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...