Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(36): e202307317, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37358186

ABSTRACT

Pyrazolones represent an important structural motif in active pharmaceutical ingredients. Their asymmetric synthesis is thus widely studied. Still, a generally highly enantio- and diastereoselective 1,4-addition to nitroolefins providing products with adjacent stereocenters is elusive. In this article, a new polyfunctional CuII -1,2,3-triazolium-aryloxide catalyst is presented which enables this reaction type with high stereocontrol. DFT studies revealed that the triazolium stabilizes the transition state by hydrogen bonding between C(5)-H and the nitroolefin and verify a cooperative mode of activation. Moreover, they show that the catalyst adopts a rigid chiral cage/pore structure by intramolecular hydrogen bonding, by which stereocontrol is achieved. Control catalyst systems confirm the crucial role of the triazolium, aryloxide and CuII , requiring a sophisticated structural orchestration for high efficiency. The addition products were used to form pyrazolidinones by chemoselective C=N reduction. These heterocycles are shown to be valuable precursors toward ß,γ'-diaminoamides by chemoselective nitro and N-N bond reductions. Morphological profiling using the Cell painting assay identified biological activities for the pyrazolidinones and suggest modulation of DNA synthesis as a potential mode of action. One product showed biological similarity to Camptothecin, a lead structure for cancer therapy.

2.
Angew Chem Int Ed Engl ; 62(13): e202217519, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36651714

ABSTRACT

A catalyst type is disclosed allowing for exceptional efficiency in direct 1,4-additions. The catalyst is a zwitterionic entity, in which acetate binds to CuII , which is formally negatively charged and serving as counterion for benzimidazolium. All 3 functionalities are involved in the catalytic activation. For maleimides productivity was increased by a factor >300 compared to literature (TONs up to 6700). High stereoselectivity and productivity was attained for a broad range of other Michael acceptors as well. The polyfunctional catalyst is accessible in only 4 steps from N-Ph-benzimidazole with an overall yield of 96 % and robust during catalysis. This allowed to reuse the same catalyst multiple times with nearly constant efficiency. Mechanistic studies, in particular by DFT, give a detailed picture how the catalyst operates. The benzimidazolium unit stabilizes the coordinated enolate nucleophile and prevents that acetate/acetic acid dissociate from the catalyst.

3.
Angew Chem Int Ed Engl ; 59(45): 19873-19877, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32697020

ABSTRACT

Diels-Alder reactions have become established as one of the most effective ways to prepare stereochemically complex six-membered rings. Different catalysis concepts have been reported, including dienophile activation by Lewis acids or H-bond donors and diene activation by bases. Herein we report a new concept, in which an acidic prodiene is acidified by a Lewis acid to facilitate deprotonation by an imidazolium-aryloxide entity within a polyfunctional catalyst. A metal dienolate is thus formed, while an imidazolium-ArOH moiety probably forms hydrogen bonds with the dienophile. The catalyst type, readily prepared in few steps in high overall yield, was applied to 3-hydroxy-2-pyrone and 3-hydroxy-2-pyridone as well as cyclopentenone prodienes. Maleimide, maleic anhydride, and nitroolefin dienophiles were employed. Kinetic, spectroscopic, and control experiments support a cooperative mode of action. High enantioselectivity was observed even with unprecedented TONs of up to 3680.

4.
J Pharmacol Exp Ther ; 368(3): 462-473, 2019 03.
Article in English | MEDLINE | ID: mdl-30622171

ABSTRACT

The endothelin (ET) system has emerged as a novel target for hypertension treatment where a medical need persists despite availability of several pharmacological classes, including renin angiotensin system (RAS) blockers. ET receptor antagonism has demonstrated efficacy in preclinical models of hypertension, especially under low-renin conditions and in hypertensive patients. We investigated the pharmacology of aprocitentan (N-[5-(4-bromophenyl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-sulfamide), a potent dual ETA/ETB receptor antagonist, on blood pressure (BP) in two models of experimental hypertension: deoxycorticosterone acetate (DOCA)-salt rats (low-renin model) and spontaneously hypertensive rats [(SHR), normal renin model]. We also compared the effect of its combination with RAS blockers (valsartan and enalapril) with that of the combination of the mineraloreceptor antagonist spironolactone with the same RAS blockers on BP and renal function in hypertensive rats. Aprocitentan was more potent and efficacious in lowering BP in conscious DOCA-salt rats than in SHRs. In DOCA-salt rats, single oral doses of aprocitentan induced a dose-dependent and long-lasting BP decrease and 4-week administration of aprocitentan dose dependently decreased BP (statistically significant) and renal vascular resistance, and reduced left ventricle hypertrophy (nonsignificant). Aprocitentan was synergistic with valsartan and enalapril in decreasing BP in DOCA-salt rats and SHRs while spironolactone demonstrated additive effects with these RAS blockers. In hypertensive rats under sodium restriction and enalapril, addition of aprocitentan further decreased BP without causing renal impairment, in contrast to spironolactone. In conclusion, ETA/ETB receptor antagonism represents a promising therapeutic approach to hypertension, especially with low-renin characteristics, and could be used in combination with RAS blockers, without increasing the risk of renal impairment.


Subject(s)
Antihypertensive Agents/administration & dosage , Endothelin Receptor Antagonists/administration & dosage , Hypertension/drug therapy , Hypertension/physiopathology , Pyrimidines/administration & dosage , Renin-Angiotensin System/drug effects , Sulfonamides/administration & dosage , Animals , Antihypertensive Agents/pharmacology , Desoxycorticosterone Acetate/toxicity , Drug Therapy, Combination , Endothelin Receptor Antagonists/pharmacology , Hypertension/chemically induced , Male , Pyrimidines/pharmacology , Rats , Rats, Inbred SHR , Rats, Wistar , Renin-Angiotensin System/physiology , Sulfonamides/pharmacology
5.
Appl Ergon ; 71: 29-37, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29764611

ABSTRACT

A unique feature of battery electric vehicles (BEV) is their regenerative braking system (RBS) to recapture kinetic energy in deceleration maneuvers. If such a system is triggered via gas pedal, most deceleration maneuvers can be executed by just using this pedal. This impacts the driving task as different deceleration strategies can be applied. Previous research has indicated that a RBS failure leading to a sudden reduced deceleration represents an adverse event for BEV drivers. In the present study, we investigated such a failure's impact on the driver's evaluation and behavior. We conducted an experiment on a closed-off test track using a modified BEV that could temporarily switch off the RBS. One half of the 44 participants in the study received information about an upcoming RBS failure whereas the other half did not. While 91% of the drivers receiving prior information noticed the RBS failure, only 48% recognized it in the "uniformed" group. In general, the failure and the perception of its occurrence influenced the driver's evaluation and behavior more than receiving prior information. Nevertheless, under the tested conditions, drivers kept control and were able to compensate for the RBS failure. As the participants drove quite simple maneuvers in our experiment, further studies are needed to validate our findings using more complex driving settings. Given that RBS failures could have severe consequences, appropriate information and warning strategies for drivers are necessary.


Subject(s)
Automobile Driving/psychology , Automobiles , Electric Power Supplies/adverse effects , Equipment Failure , Adult , Deceleration , Female , Humans , Male , Reaction Time
6.
J Pharmacol Exp Ther ; 362(1): 186-199, 2017 07.
Article in English | MEDLINE | ID: mdl-28476928

ABSTRACT

Prostacyclin (PGI2) receptor (IP receptor) agonists, which are indicated for the treatment of pulmonary arterial hypertension (PAH), increase cytosolic cAMP levels and thereby inhibit pulmonary vasoconstriction, pulmonary arterial smooth muscle cell (PASMC) proliferation, and extracellular matrix synthesis. Selexipag (Uptravi, 2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide) is the first nonprostanoid IP receptor agonist, it is available orally and was recently approved for the treatment of PAH. In this study we show that the active metabolite of selexipag and the main contributor to clinical efficacy ACT-333679 (previously known as MRE-269) behaved as a full agonist in multiple PAH-relevant receptor-distal-or downstream-cellular assays with a maximal efficacy (Emax) comparable to that of the prototypic PGI2 analog iloprost. In PASMC, ACT-333679 potently induced cellular relaxation (EC50 4.3 nM) and inhibited cell proliferation (IC50 4.0 nM) as well as extracellular matrix synthesis (IC50 8.3 nM). In contrast, ACT-333679 displayed partial agonism in receptor-proximal-or upstream-cAMP accumulation assays (Emax 56%) when compared with iloprost and the PGI2 analogs beraprost and treprostinil (Emax ∼100%). Partial agonism of ACT-333679 also resulted in limited ß-arrestin recruitment (Emax 40%) and lack of sustained IP receptor internalization, whereas all tested PGI2 analogs behaved as full agonists in these desensitization-related assays. In line with these in vitro findings, selexipag, but not treprostinil, displayed sustained efficacy in rat models of pulmonary and systemic hypertension. Thus, the partial agonism of ACT-333679 allows for full efficacy in amplified receptor-distal PAH-relevant readouts while causing limited activity in desensitization-related receptor-proximal readouts.


Subject(s)
Acetamides/pharmacology , Acetates/pharmacology , Contractile Proteins/antagonists & inhibitors , Muscle Contraction/drug effects , Pyrazines/pharmacology , beta-Arrestins/metabolism , Animals , CHO Cells , Cell Proliferation/drug effects , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Epoprostenol/analogs & derivatives , Epoprostenol/pharmacology , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Iloprost/pharmacology , Male , Muscle Relaxation/drug effects , Rats , Rats, Inbred SHR , Rats, Wistar , Receptors, Epoprostenol/agonists
7.
J Cardiovasc Pharmacol ; 66(5): 457-67, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26230396

ABSTRACT

AIMS: We compared the efficacy of macitentan, a novel dual endothelin A/endothelin B receptor antagonist, with that of another dual endothelin receptor antagonist, bosentan, in a rat model of non-vasoreactive pulmonary hypertension (PH) with particular emphasis on right ventricular (RV) remodeling. METHODS AND RESULTS: Unlike monocrotaline or hypoxic/sugen rats, bleomycin-treated rats presented a non-vasoreactive PH characterized by the absence of pulmonary dilatation to adenosine. We therefore chose the bleomycin rat model to compare the effects of the maximally effective doses of macitentan and bosentan on pulmonary vascular and RV remodeling. Macitentan (100 mg·kg(-1)·d(-1)), but not bosentan (300 mg·kg(-1)·d(-1)), significantly prevented pulmonary vascular remodeling, RV hypertrophy, and cardiomyocyte diameter increase. Cardiac protection by macitentan was associated with a significant attenuation of genes related to cell hypertrophy and extracellular matrix remodeling. Microautoradiography and high performance liquid chromatography analysis showed greater distribution of macitentan than bosentan in the RV and pulmonary tissue. CONCLUSIONS: Macitentan was more efficacious than bosentan in preventing the development of pulmonary and RV hypertrophies in a model of non-vasoreactive PH. Greater ability to distribute into the tissue could contribute to the greater structural improvement by macitentan compared with bosentan.


Subject(s)
Endothelin Receptor Antagonists/pharmacology , Heart Ventricles/drug effects , Hypertension, Pulmonary/drug therapy , Hypertrophy, Right Ventricular/prevention & control , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Ventricular Function, Right/drug effects , Ventricular Remodeling/drug effects , Animals , Bleomycin , Bosentan , Disease Models, Animal , Gene Expression Regulation , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Male , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/physiopathology , Rats, Wistar , Time Factors , Vascular Remodeling/drug effects
8.
J Cardiovasc Pharmacol ; 66(4): 332-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25992919

ABSTRACT

INTRODUCTION: The goal of this study was to characterize the role of Endothelin (ET) type B receptors (ETB) on vascular function in healthy and diseased conditions and demonstrate how it affects the pharmacological activity of ET receptor antagonists (ERAs). METHODS: The contribution of the ETB receptor to vascular relaxation or constriction was characterized in isolated arteries from healthy and diseased rats with systemic (Dahl-S) or pulmonary hypertension (monocrotaline). Because the role of ETB receptors is different in pathological vis-à-vis normal conditions, we compared the efficacy of ETA-selective and dual ETA/ETB ERAs on blood pressure in hypertensive rats equipped with telemetry. RESULTS: In healthy vessels, ETB receptors stimulation with sarafotoxin S6c induced vasorelaxation and no vasoconstriction. In contrast, in arteries of rats with systemic or pulmonary hypertension, endothelial ETB-mediated relaxation was lost while vasoconstriction on stimulation by sarafotoxin S6c was observed. In hypertensive rats, administration of the dual ETA/ETB ERA macitentan on top of a maximal effective dose of the ETA-selective ERA ambrisentan further reduced blood pressure, indicating that ETB receptors blockade provides additional benefit. CONCLUSIONS: Taken together, these data suggest that in pathology, dual ETA/ETB receptor antagonism can provide superior vascular effects compared with ETA-selective receptor blockade.


Subject(s)
Endothelin A Receptor Antagonists/pharmacology , Endothelin B Receptor Antagonists/pharmacology , Hypertension, Pulmonary/drug therapy , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Vasodilation/drug effects , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Hypertension, Pulmonary/metabolism , In Vitro Techniques , Nitric Oxide/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Rats, Inbred Dahl , Rats, Wistar , Vasoconstriction/drug effects
9.
Life Sci ; 118(2): 333-9, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-24582812

ABSTRACT

AIMS: The endothelin (ET) system is a tissular system, as the production of ET isoforms is mostly autocrine or paracrine. Macitentan is a novel dual ETA/ETB receptor antagonist with enhanced tissue distribution and sustained receptor binding properties designed to achieve a more efficacious ET receptor blockade. To determine if these features translate into improved efficacy in vivo, a study was designed in which rats with either systemic or pulmonary hypertension and equipped with telemetry were given macitentan on top of maximally effective doses of another dual ETA/ETB receptor antagonist, bosentan, which does not display sustained receptor occupancy and shows less tissue distribution. MAIN METHODS: After establishing dose-response curves of both compounds in conscious, hypertensive Dahl salt-sensitive and pulmonary hypertensive bleomycin-treated rats, macitentan was administered on top of the maximal effective dose of bosentan. KEY FINDINGS: In hypertensive rats, macitentan 30 mg/kg further decreased mean arterial blood pressure (MAP) by 19 mm Hg when given on top of bosentan 100 mg/kg (n=9, p<0.01 vs. vehicle). Conversely, bosentan given on top of macitentan failed to induce an additional MAP decrease. In pulmonary hypertensive rats, macitentan 30 mg/kg further decreased mean pulmonary artery pressure (MPAP) by 4 mm Hg on top of bosentan (n=8, p<0.01 vs. vehicle), whereas a maximal effective dose of bosentan given on top of macitentan did not cause any additional MPAP decrease. SIGNIFICANCE: The add-on effect of macitentan on top of bosentan in two pathological models confirms that this novel compound can achieve a superior blockade of ET receptors and provides evidence for greater maximal efficacy.


Subject(s)
Hypertension, Pulmonary/drug therapy , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Animals , Bleomycin , Bosentan , Disease Models, Animal , Dose-Response Relationship, Drug , Endothelin Receptor Antagonists/blood , Endothelin Receptor Antagonists/pharmacology , Endothelin Receptor Antagonists/therapeutic use , Hypertension, Pulmonary/blood , Pyrimidines/blood , Pyrimidines/therapeutic use , Rats , Rats, Inbred Dahl , Reproducibility of Results , Sulfonamides/blood , Sulfonamides/therapeutic use
10.
Hypertension ; 57(4): 795-801, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21357272

ABSTRACT

The renin-angiotensin system is a well-known regulator of blood pressure and plays an important role in the pathogenesis of cardiovascular disease and renal damage. Genetic factors, including single nucleotide polymorphisms and sex, are increasingly recognized as potential risk factors for the development of cardiovascular disease. Double transgenic rats (dTGRs), harboring human renin and angiotensinogen genes, were used in this study to investigate potential sex differences influencing renal function and renal gene expression. dTGR males and females had comparable increases in blood pressure, whereas body weight, albuminuria/proteinuria, and urine flow rate were higher in males. At 8 weeks of age, renal plasma flow and glomerular filtration rate were proportionally lower in males, and renal vascular resistance tended to be higher. Males developed more severe tubulointerstitial and vascular lesions. By the end of week 8, 40%of the males but none of the females had died. Genome expression studies were performed with RNA from kidneys of 7-week-old male and female dTGRs and control rats to further investigate the sex-related differences on a molecular level. Forty-five genes showed sex-dependent expression patterns in dTGRs that were significantly different compared to controls. Cathepsin L, one of the genes differentially expressed between the sexes, was also shown to be strongly associated with the degree of renal injury. In dTGRs, urinary cathepsin L at week 7 was higher in males (nanograms per 24 hours: male, 512±163; female, 132±70). These results reveal a potential new biomarker for the personalized diagnosis and management of chronic kidney disease.


Subject(s)
Angiotensinogen/genetics , Cathepsin L/genetics , Kidney/metabolism , Renin/genetics , Sex Characteristics , Analysis of Variance , Angiotensinogen/metabolism , Animals , Biomarkers/metabolism , Blood Pressure/physiology , Cathepsin L/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Glomerular Filtration Rate/physiology , Humans , Immunohistochemistry , Kidney/pathology , Kidney/physiopathology , Male , Oligonucleotide Array Sequence Analysis , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Renal Circulation/physiology , Renin/metabolism , Renin-Angiotensin System/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tissue Array Analysis , Vascular Resistance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...