Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cytometry A ; 103(12): 967-977, 2023 12.
Article in English | MEDLINE | ID: mdl-37807901

ABSTRACT

Hematopoietic stem cells are key players in hematopoiesis as the body maintains a physiologic steady state, and the signaling pathways and control mechanisms of these dynamic cells are implicated in processes from inflammation to cancer. Although the bone marrow is commonly regarded as the site of hematopoiesis and hematopoietic stem cell residence, these cells also circulate in the blood and reside in extramedullary tissues, including the lungs. Flow cytometry is an invaluable tool in evaluating hematopoietic stem cells, revealing their phenotypes and relative abundances in both healthy and diseased states. This review outlines current protocols and cell markers used in flow cytometric analysis of hematopoietic stem and progenitor cell populations. Specific niches within the bone marrow are discussed, as are metabolic processes that contribute to stem cell self-renewal and differentiation, as well as the role of hematopoietic stem cells outside of the bone marrow at physiologic steady state. Finally, pulmonary extramedullary hematopoiesis and its associated disease states are outlined. Hematopoiesis in the lungs is a new and emerging concept, and discovering ways in which the study of lung-resident hematopoietic stem cells can be translated from murine models to patients will impact clinical treatment.


Subject(s)
Hematopoiesis, Extramedullary , Humans , Animals , Mice , Hematopoietic Stem Cells/metabolism , Hematopoiesis , Bone Marrow/metabolism , Lung
2.
Front Bioeng Biotechnol ; 10: 827987, 2022.
Article in English | MEDLINE | ID: mdl-35372303

ABSTRACT

Autofluorescence (AF) is a feature of all cell types, though some have more than others. In tissues with complex heterogeneous cellularity, AF is frequently a source of high background, masking faint fluorescent signals and reducing the available dynamic range of detectors for detecting fluorescence signals from markers of interest in a flow cytometry panel. Pulmonary flow cytometry presents unique challenges because lung cells are heterogeneous and contain varying amounts of high AF. The goal of this study was to demonstrate how a novel AF Finder tool on the Sony ID7000™ Spectral Cell Analyzer can be used to identify and screen multiple AF subsets in complex highly AF tissues like murine lungs. In lung single cell suspensions, the AF Finder tool identified four distinct AF spectra from six highly AF subsets. The subtraction of these distinct AF spectra resulted in a resolution increase by several log decades in several fluorescent channels. The major immune and lung tissue resident cells in a murine model of asthma were easily identified in a multi-color panel using AF subtraction. The findings demonstrate the practicality of the AF Finder tool, particularly when analyzing samples with multiple AF populations of varying intensities, in order to reduce fluorescence background and increase signal resolution in spectral flow cytometry.

3.
Immunohorizons ; 5(1): 33-47, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33478982

ABSTRACT

Allergic airway disease models use laboratory mice housed in highly controlled and hygienic environments, which provide a barrier between the mice and a predetermined list of specific pathogens excluded from the facility. In this study, we hypothesized that differences in facility barrier level and, consequently, the hygienic quality of the environment that mice inhabit impact the severity of pulmonary inflammation and lung function. Allergen-naive animals housed in the cleaner, high barrier (HB) specific pathogen-free facility had increased levels of inflammatory cytokines and higher infiltration of immune cells in the lung tissue but not in the bronchoalveolar lavage compared with mice housed in the less hygienic, low barrier specific pathogen-free facility. In both genders, house dust mite-induced airway disease was more severe in the HB than the low barrier facility. Within each barrier facility, female mice developed the most severe inflammation. However, allergen-naive male mice had worse lung function, regardless of the housing environment, and in the HB, the lung function in female mice was higher in the house dust mite model. Severe disease in the HB was associated with reduced lung microbiome diversity. The lung microbiome was altered across housing barriers, gender, and allergen-exposed groups. Thus, the housing barrier level impacts microbial-driven disease and gender phenotypes in allergic asthma. The housing of laboratory mice in more clean HB facilities aggravates lung immunity and causes a more severe allergic lung disease.


Subject(s)
Dust/immunology , Housing , Pyroglyphidae/immunology , Respiratory Hypersensitivity/physiopathology , Animals , Asthma/etiology , Cytokines/biosynthesis , Female , Immunoglobulin E/blood , Lung/immunology , Lung/physiopathology , Male , Mice , Mice, Inbred C57BL , Respiratory Hypersensitivity/etiology , Sex Factors
4.
Cytometry A ; 99(3): 251-256, 2021 03.
Article in English | MEDLINE | ID: mdl-33345421

ABSTRACT

The endothelium forms a selective barrier between circulating blood or lymph and surrounding tissue. Endothelial cells play an essential role in vessel homeostasis, and identification of these cells is critical in vascular biology research. However, characteristics of endothelial cells differ depending on the location and type of blood or lymph vessel. Endothelial cell subsets are numerous and often identified using different flow cytometric markers, making immunophenotyping these cells complex. In part 1 of this two part review series, we present a comprehensive overview of markers for the flow cytometric identification and phenotyping of murine endothelial subsets. These subsets can be distinguished using a panel of cell surface and intracellular markers shared by all endothelial cells in combination with additional markers of specialized endothelial cell types. This review can be used to determine the best markers for identifying and phenotyping desired murine endothelial cell subsets.


Subject(s)
Endothelial Cells , Animals , Biomarkers , Flow Cytometry , Immunophenotyping , Mice
5.
Cytometry A ; 99(3): 257-264, 2021 03.
Article in English | MEDLINE | ID: mdl-33369145

ABSTRACT

In vascular research, clinical samples and samples from animal models are often used together to foster translation of preclinical findings to humans. General concepts of endothelia and murine-specific endothelial phenotypes were discussed in part 1 of this two part series. Here, in part 2, we present a comprehensive overview of human-specific endothelial phenotypes. Pan-endothelial cell markers, organ specific endothelial antigens, and flow cytometric immunophenotyping of blood-borne endothelial cells are reviewed.


Subject(s)
Endothelial Cells , Animals , Biomarkers , Flow Cytometry , Humans , Immunophenotyping , Leukocyte Common Antigens , Mice
6.
Mitochondrion ; 54: 102-112, 2020 09.
Article in English | MEDLINE | ID: mdl-32781153

ABSTRACT

Intact cell-free mitochondria have been reported in microparticles (MPs) in murine and human bodily fluids under disease conditions. However, cellular origins of circulating extracellular mitochondria have not been characterized. We hypothesize that intact, cell-free mitochondria from heterogeneous cellular sources are present in the circulation under physiological conditions. To test this, circulating MPs were analyzed using flow cytometry and proteomics. Murine and human platelet-depleted plasma showed a cluster of MPs positive for the mitochondrial probe MitoTracker. Transgenic mice expressing mitochondrial-GFP showed GFP positivity in plasma MPs. Murine and human mitochondria-containing MPs were positive for the platelet marker CD41 and the endothelial cell marker CD144, while hematopoietic CD45 labeling was low. Both murine and human circulating cell-free mitochondria maintained a transmembrane potential. Circulating mitochondria were able to enter rho-zero cells, and were visualized using immunoelectron microscopic imaging. Proteomics analysis identified mitochondria specific and extracellular vesicle associated proteins in sorted circulating cell-free human mitochondria. Together the data provide multiple lines of evidence that intact and functional mitochondria originating from several cell types are present in the blood circulation.


Subject(s)
Cell-Derived Microparticles/metabolism , Mitochondria/metabolism , Plasma/cytology , Proteomics/methods , Adult , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Female , Flow Cytometry , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Male , Membrane Potential, Mitochondrial , Mice , Mice, Transgenic , Microscopy, Immunoelectron , Middle Aged , Platelet Membrane Glycoprotein IIb/metabolism
7.
JCI Insight ; 5(2)2020 01 30.
Article in English | MEDLINE | ID: mdl-31996482

ABSTRACT

Inducible nitric oxide synthase (iNOS) and arginase-2 (ARG2) share a common substrate, arginine. Higher expression of iNOS and exhaled NO are linked to airway inflammation in patients. iNOS deletion in animal models suggests that eosinophilic inflammation is regulated by arginine metabolism. Moreover, ARG2 is a regulator of Th2 response, as shown by the development of severe eosinophilic inflammation in ARG2-/- mice. However, potential synergistic roles of iNOS and ARG2 in asthma have not been explored. Here, we hypothesized that arginine metabolic fate via iNOS and ARG2 may govern airway inflammation. In an asthma cohort, ARG2 variant genotypes were associated with arginase activity. ARG2 variants with lower arginase activity, combined with levels of exhaled NO, identified a severe asthma phenotype. Airway inflammation was present in WT, ARG2-/-, iNOS-/-, and ARG2-/-/iNOS-/- mice but was greatest in ARG2-/-. Eosinophilic and neutrophilic infiltration in the ARG2-/- mice was abrogated in ARG2-/-/iNOS-/- animals. Similarly, angiogenic airway remodeling was greatest in ARG2-/- mice. Cytokines driving inflammation and remodeling were highest in lungs of asthmatic ARG2-/- mice and lowest in the iNOS-/-. ARG2 metabolism of arginine suppresses inflammation, while iNOS metabolism promotes airway inflammation, supporting a central role for arginine metabolic control of inflammation.


Subject(s)
Arginase/metabolism , Arginine/metabolism , Inflammation/metabolism , Lung/metabolism , Nitric Oxide Synthase Type II/metabolism , Adult , Animals , Arginase/genetics , Asthma/metabolism , Cytokines/metabolism , Disease Models, Animal , Female , Genotype , Humans , Inflammation/immunology , Inflammation/pathology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Polymorphism, Single Nucleotide
8.
Methods Mol Biol ; 2032: 203-211, 2019.
Article in English | MEDLINE | ID: mdl-31522421

ABSTRACT

Flow-cytometric detection of circulating endothelial cells and endothelial microparticles is an essential tool in studies of vascular diseases. Here we describe the principles and detailed methods for human blood sample processing, storage, labeling, and gating of circulating endothelial elements.


Subject(s)
Endothelial Cells/immunology , Flow Cytometry/methods , Immunophenotyping/methods , Vascular Diseases/diagnosis , Blood Platelets/immunology , Cell Count , Cell-Derived Microparticles/immunology , Humans , Vascular Diseases/immunology
9.
J Clin Invest ; 128(7): 3116-3128, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29911993

ABSTRACT

Protease-activated receptor 2 (PAR-2), an airway epithelial pattern recognition receptor (PRR), participates in the genesis of house dust mite-induced (HDM-induced) asthma. Here, we hypothesized that lung endothelial cells and proangiogenic hematopoietic progenitor cells (PACs) that express high levels of PAR-2 contribute to the initiation of atopic asthma. HDM extract (HDME) protease allergens were found deep in the airway mucosa and breaching the endothelial barrier. Lung endothelial cells and PACs released the Th2-promoting cytokines IL-1α and GM-CSF in response to HDME, and the endothelium had PAC-derived VEGF-C-dependent blood vessel sprouting. Blockade of the angiogenic response by inhibition of VEGF-C signaling lessened the development of inflammation and airway remodeling in the HDM model. Reconstitution of the bone marrow in WT mice with PAR-2-deficient bone marrow also reduced airway inflammation and remodeling. Adoptive transfer of PACs that had been exposed to HDME induced angiogenesis and Th2 inflammation with remodeling similar to that induced by allergen challenge. Our findings identify that lung endothelium and PACs in the airway sense allergen and elicit an angiogenic response that is central to the innate nonimmune origins of Th2 inflammation.


Subject(s)
Allergens/immunology , Asthma/etiology , Immunity, Innate , Lung/immunology , Airway Remodeling/immunology , Allergens/administration & dosage , Animals , Asthma/immunology , Cytokines/biosynthesis , Disease Models, Animal , Early Growth Response Transcription Factors/immunology , Endothelial Cells/immunology , Endothelial Cells/ultrastructure , Female , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/pathology , Humans , Hypersensitivity, Immediate/etiology , Hypersensitivity, Immediate/immunology , Hypersensitivity, Immediate/pathology , Kruppel-Like Transcription Factors/immunology , Lung/ultrastructure , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Neovascularization, Pathologic , Pyroglyphidae/immunology , Receptor, PAR-2/deficiency , Receptor, PAR-2/genetics , Receptor, PAR-2/immunology , Th2 Cells/immunology , Vascular Endothelial Growth Factor Receptor-3/antagonists & inhibitors
10.
Cytometry A ; 93(9): 952-958, 2018 07.
Article in English | MEDLINE | ID: mdl-29659138

ABSTRACT

Airway fibrosis is a prominent feature of asthma, contributing to the detrimental consequences of the disease. Fibrosis in the airway is the result of collagen deposition in the reticular lamina layer of the subepithelial tissue. Myofibroblasts are the leading cell type involved with this collagen deposition. Established methods of collagen deposition quantification present various issues, most importantly their inability to quantify current collagen biosynthesis occurring in airway myofibroblasts. Here, a novel method to quantify myofibroblast collagen expression in asthmatic lungs is described. Single cell suspensions of lungs harvested from C57BL/6 mice in a standard house dust mite model of asthma were employed to establish a flow cytometric method and compare collagen production in asthmatic and non-asthmatic lungs. Cells found to be CD45- αSMA+ , indicative of myofibroblasts, were gated, and median fluorescence intensity of the anti-collagen-I antibody labeling the cells was calculated. Lung myofibroblasts with no, medium, or high levels of collagen-I expression were distinguished. In asthmatic animals, collagen-I levels were increased in both medium and high expressers, and the number of myofibroblasts with high collagen-I content was elevated. Our findings determined that quantification of collagen-I deposition in myofibroblastic lung cells by flow cytometry is feasible in mouse models of asthma and indicative of increased collagen-I expression by asthmatic myofibroblasts. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Asthma/pathology , Lung/pathology , Pulmonary Fibrosis/pathology , Animals , Asthma/metabolism , Collagen/metabolism , Disease Models, Animal , Female , Fibroblasts/pathology , Flow Cytometry/methods , Lung/metabolism , Mice , Mice, Inbred C57BL
11.
Cytometry A ; 93(5): 563-570, 2018 05.
Article in English | MEDLINE | ID: mdl-29573550

ABSTRACT

Beta-adrenergic receptors (ß-ARs) play a critical role in many diseases. Quantification of ß-AR density may have clinical implications in terms of assessing disease severity and identifying patients who could potentially benefit from beta-blocker therapy. Classical methods for ß-AR quantification are based on labor-intensive and time-consuming radioligand binding assays. Here, we report optimization of a flow cytometry-based method utilizing a biotinylated ß-AR ligand alprenolol as a probe and use of this method to quantify relative receptor expression in healthy controls (HC). Quantum™ MESF beads were used for quantification in absolute fluorescence units. The probe was chemically modified by adding a spacer moiety between biotin and alprenolol to stabilize receptor binding, thus preventing binding decay. Testing of three different standard cell fixation and permeabilization methods (formaldehyde fixation and saponin, Tween-20, or Triton-X 100 permeabilization) showed that the formaldehyde/Triton-X 100 method yielded the best results. ß-AR expression was significantly higher in granulocytes compared to mononuclear cells. These data show that flow cytometric quantification of relative ß-AR expression in circulating leukocytes is a suitable technology for large-scale clinical application. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Flow Cytometry/methods , Leukocytes , Receptors, Adrenergic, beta/analysis , Humans , Tissue Fixation/methods
12.
Blood Adv ; 1(9): 526-534, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-29296972

ABSTRACT

Accumulating evidence shows a causative role for the bone marrow (BM) in the genesis and progression of pulmonary hypertension (PH). Engraftment of BM hematopoietic stem cells from PH patients to mice reproduces the cardiopulmonary pathology of PH. However, it is unknown whether healthy BM can prevent the development of right heart disease. Caveolin-1-deficient (CAV-1 KO) mice develop cardiopulmonary disease with manifestations resembling PH, including elevated right ventricular (RV) systolic pressure (RVSP), RV hypertrophy, and pulmonary endothelial proliferative disease. Here, we hypothesize that engraftment of healthy BM to CAV-1 KO mice will prevent pulmonary vascular remodeling and development of the cardiopulmonary disease. CAV-1 KO mice and wild-type (WT) mice underwent transplantation with WT or CAV-1 KO BM. Hematopoietic differentiation was analyzed by flow cytometry. Pulmonary endothelial remodeling was quantified by CD31 image analysis. RVSP and RV cardiomyocyte area or Fulton's index were used to analyze RV hypertrophy. Maladaptive RV hypertrophy was determined by quantification of RV fibrosis. Transplantation of CAV-1 KO BM into healthy recipient WT mice led to elevation of RVSP, RV hypertrophy, and pulmonary endothelial remodeling. Reconstitution of CAV-1 KO with WT BM prevented spontaneous development of PH, including elevation of RVSP and maladaptive RV hypertrophy, but not pulmonary endothelial remodeling. Healthy BM has a protective role in the right ventricle independent of pulmonary vascular disease.

13.
PLoS One ; 11(6): e0156940, 2016.
Article in English | MEDLINE | ID: mdl-27270458

ABSTRACT

Pulmonary arterial hypertension (PAH) is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although ß-adrenergic receptor (ßAR) dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs) are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of ßAR density on circulating white blood cells (WBC) and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated ß-blocker alprenolol was synthesized and validated as a ßAR specific probe that was combined with immunophenotyping to quantify ßAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that ßAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE) in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell ßAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH.


Subject(s)
Cell-Derived Microparticles/metabolism , Hypertension, Pulmonary/metabolism , Leukocytes/metabolism , Receptors, Adrenergic, beta/blood , Adult , Alprenolol/pharmacology , Female , Flow Cytometry , Humans , Leukocytes/drug effects , Male , Middle Aged , Receptors, Adrenergic, beta/drug effects
14.
J Immunol ; 196(5): 2377-87, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26810221

ABSTRACT

Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole-lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge and before airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and a murine model of asthma. Ex vivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wild-type mice transplanted with eotaxin-1/2-deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, whereas adoptive transfer of proangiogenic progenitor cells from wild-type mice in an atopic asthma model into the eotaxin-1/2-deficient mice led to angiogenesis and airway inflammation. The findings indicate that Th2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation.


Subject(s)
Asthma/metabolism , Asthma/pathology , Chemokine CCL11/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Hematopoietic Stem Cells/metabolism , Neovascularization, Pathologic/metabolism , Receptors, CCR3/metabolism , Adoptive Transfer , Adult , Allergens/immunology , Animals , Asthma/genetics , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Case-Control Studies , Chemokine CCL11/genetics , Chemokine CCL24/genetics , Chemokine CCL24/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Eosinophils/immunology , Eosinophils/metabolism , Female , Humans , Hypersensitivity, Immediate/genetics , Hypersensitivity, Immediate/metabolism , Hypersensitivity, Immediate/pathology , Immunohistochemistry , Male , Mice , Mice, Knockout , Th2 Cells/immunology , Th2 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...