Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(8)2021 08 08.
Article in English | MEDLINE | ID: mdl-34440397

ABSTRACT

Transposable element sequences are usually vertically inherited but have also spread across taxa via horizontal transfer. Previous investigations of ancient horizontal transfer of transposons have compared consensus sequences, but this method resists detection of recent single or low copy number transfer events. The relationship between humans and domesticated animals represents an opportunity for potential horizontal transfer due to the consistent shared proximity and exposure to parasitic insects, which have been identified as plausible transfer vectors. The relatively short period of extended human-animal contact (tens of thousands of years or less) makes horizontal transfer of transposons between them unlikely. However, the availability of high-quality reference genomes allows individual element comparisons to detect low copy number events. Using pairwise all-versus-all megablast searches of the complete suite of retrotransposons of thirteen domestic animals against human, we searched a total of 27,949,823 individual TEs. Based on manual comparisons of stringently filtered BLAST search results for evidence of vertical inheritance, no plausible instances of HTT were identified. These results indicate that significant recent HTT between humans and domesticated animals has not occurred despite the close proximity, either due to the short timescale, inhospitable recipient genomes, a failure of vector activity, or other factors.


Subject(s)
Gene Transfer, Horizontal , Mammals/genetics , Retroelements , Animals , Humans
2.
Clin Epigenetics ; 13(1): 4, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407853

ABSTRACT

BACKGROUND: Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. RESULTS: F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. CONCLUSIONS: These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.


Subject(s)
Anxiety Disorders/chemically induced , Cannabidiol/adverse effects , DNA Methylation/drug effects , DNA Methylation/genetics , Fetal Development/drug effects , Memory Disorders/chemically induced , Prenatal Exposure Delayed Effects/genetics , Animals , Disease Models, Animal , Female , Genome-Wide Association Study , Humans , Male , Mice , Pregnancy , Sex Factors
3.
Epigenetics ; 16(2): 209-227, 2021.
Article in English | MEDLINE | ID: mdl-32619143

ABSTRACT

Decitabine (5-aza-2'deoxycytidine; DAC) is a DNA methyltransferase inhibitor used to hypomethylate the epigenome. Current dosing regimens of DAC for use in mice vary widely and their hypomethylating ability has not been robustly characterized, despite reliable results of hypomethylation of the epigenome with cell lines in vitro and tissue specificity in vivo. We investigated the effects on the DNA methylome and gene expression within mice exposed to chronic low doses of DAC ranging from 0 to 0.35 mg/kg over a period of 7 weeks without causing toxicity. Our dose paradigm resulted in no cytotoxic effects within target tissues, although testes weight and sperm concentration significantly reduced as dose increased (p-value <0.05). By whole genome bisulphite sequencing (WGBS), we identify tissue and dose-specific differentially methylated CpGs (DMCs) and regions (DMRs) in testes and liver. Testes methylation is more sensitive to DAC exposure when compared to liver, cortex, and hippocampus. Gene expression was dysregulated in testes and liver, targeting non-specific pathways as dose increases. Together our data suggest DNA methylation and gene expression are disrupted by in vivo DAC treatment in a non-uniform manner contrary to expectations, and that no dose level or regimen is sufficient to cause systemic hypomethylation in whole mice.


Subject(s)
DNA Methylation , Epigenome , Animals , Azacitidine , DNA , Decitabine , Deoxycytidine , Mice
4.
Environ Mol Mutagen ; 61(9): 890-900, 2020 11.
Article in English | MEDLINE | ID: mdl-32579259

ABSTRACT

Use of cannabidiol (CBD), the most abundant non-psychoactive compound found in cannabis (Cannabis sativa), has recently increased as a result of widespread availability of CBD-containing products. CBD is FDA-approved for the treatment of epilepsy and exhibits anxiolytic, antipsychotic, prosocial, and other behavioral effects in animal studies and clinical trials, however, the underlying mechanisms governing these phenotypes are still being elucidated. The epigenome, particularly DNA methylation, is responsive to environmental input and can govern persistent patterns of gene regulation affecting phenotype across the life course. In order to understand the epigenomic activity of cannabidiol exposure in the adult brain, 12-week-old male wild-type a/a Agouti viable yellow (Avy ) mice were exposed to either 20 mg/kg CBD or vehicle daily by oral administration for 14 days. Hippocampal tissue was collected and reduced-representation bisulfite sequencing (RRBS) was performed. Analyses revealed 3,323 differentially methylated loci (DMLs) in CBD-exposed animals with a small skew toward global hypomethylation. Genes for cell adhesion and migration, dendritic spine development, and excitatory postsynaptic potential were found to be enriched in a gene ontology term analysis of DML-containing genes, and disease ontology enrichment revealed an overrepresentation of DMLs in gene sets associated with autism spectrum disorder, schizophrenia, and other phenotypes. These results suggest that the epigenome may be a key substrate for CBD's behavioral effects and provides a wealth of gene regulatory information for further study.


Subject(s)
Anticonvulsants/pharmacology , Cannabidiol/pharmacology , DNA Methylation/drug effects , Hippocampus/drug effects , Administration, Oral , Animals , Anticonvulsants/administration & dosage , Anticonvulsants/chemistry , Cannabidiol/administration & dosage , Cannabidiol/chemistry , Cannabis/chemistry , Epigenesis, Genetic/drug effects , Hippocampus/metabolism , Male , Mice
5.
Environ Epigenet ; 5(4): dvz022, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31777665

ABSTRACT

The effects of in utero exposure to illicit drugs on adult offspring are a significant and widespread but understudied global health concern, particularly in light of the growing opioid epidemic and emerging therapeutic uses for cannabis, ketamine, and MDMA. Epigenetic mechanisms including DNA methylation, histone modifications, and expression of non-coding RNAs provide a mechanistic link between the prenatal environment and health consequences years beyond the original exposure, and shifts in the epigenome present in early life or adolescence can lead to disease states only appearing during adulthood. The current review summarizes the literature assessing effects of perinatal illicit drug exposure on adult disease phenotypes as mediated by perturbations of the epigenome. Both behavioral and somatic phenotypes are included and studies reporting clinical data in adult offspring, epigenetic readouts in offspring of any age, or both phenotypic and epigenetic measures are prioritized. Studies of licit substances of abuse (i.e. alcohol, nicotine) are excluded with a focus on cannabis, psychostimulants, opioids, and psychedelics; current issues in the field and areas of interest for further investigation are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...