Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Mol Cell Cardiol ; 60: 151-60, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23632046

ABSTRACT

Nebulette (NEBL) is a sarcomeric Z-disk protein involved in mechanosensing and force generation via its interaction with actin and tropomyosin-troponin complex. Genetic abnormalities in NEBL lead to dilated cardiomyopathy (DCM) in humans and animal models. The objectives of this study are to determine the earliest preclinical mechanical changes in the myocardium and define underlying molecular mechanisms by which NEBL mutations lead to cardiac dysfunction. We examined cardiac function in 3-month-old non-transgenic (non-Tg) and transgenic (Tg) mice (WT-Tg, G202R-Tg, A592E-Tg) by cardiac magnetic resonance (CMR) imaging. Contractility and calcium transients were measured in isolated cardiomyocytes. A592E-Tg mice exhibited enhanced in vivo twist and untwisting rate compared to control groups. Ex vivo analysis of A592E-Tg cardiomyocytes showed blunted calcium decay response to isoproterenol. CMR imaging of G202R-Tg mice demonstrated reduced torsion compared to non-Tg and WT-Tg, but conserved twist and untwisting rate after correcting for geometric changes. Ex vivo analysis of G202R-Tg cardiomyocytes showed elevated calcium decay at baseline and a conserved contractile response to isoproterenol stress. Protein analysis showed decreased α-actinin and connexin43, and increased cardiac troponin I phosphorylation at baseline in G202R-Tg, providing a molecular mechanism for enhanced ex vivo calcium decay. Ultrastructurally, G202R-Tg cardiomyocytes exhibited increased I-band and sarcomere length, desmosomal separation, and enlarged t-tubules. A592E-Tg cardiomyocytes also showed abnormal ultrastructural changes and desmin downregulation. This study showed distinct effects of NEBL mutations on sarcomere ultrastructure, cellular contractile function, and calcium homeostasis in preclinical DCM in vivo. We suggest that these abnormalities correlate with detectable myocardial wall motion patterns.


Subject(s)
Calcium Signaling , Cardiomegaly/metabolism , Cytoskeletal Proteins/metabolism , Heart Defects, Congenital/metabolism , LIM Domain Proteins/metabolism , Mutation , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Actinin/genetics , Actinin/metabolism , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Cytoskeletal Proteins/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , LIM Domain Proteins/genetics , Mice , Mice, Transgenic , Myocardial Contraction/genetics , Myocardium/pathology , Myocytes, Cardiac/pathology , Sarcomeres/genetics , Sarcomeres/metabolism , Sarcomeres/pathology
2.
Magn Reson Med ; 46(5): 985-92, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11675651

ABSTRACT

Cryosurgery has been shown to be an effective therapy for prostate cancer. Temperature monitoring throughout the cryosurgical iceball could dramatically improve efficacy, since end temperatures of at least -40 degrees C are required. The results of this study indicate that MR thermometry based on tissue R(*)(2) has the potential to provide this information. Frozen tissue appears as a complete signal void on conventional MRI. Ultrashort echo times (TEs), achievable with half pulse excitation and a short spiral readout, allow frozen tissue to be imaged and MR characteristics to be measured. However, half pulse excitation is highly sensitive to eddy current distortions of the slice-select gradient. In this work, the effects of eddy currents on the half pulse technique are characterized and methods to overcome these effects are developed. The methods include: 1) eddy current compensated slice-select gradients, and 2) a correction for the phase shift between the first and second half excitations at the center of the slice. The effectiveness of these methods is demonstrated in R(*)(2) maps calculated within the frozen region during cryoablation.


Subject(s)
Cryosurgery , Magnetic Resonance Imaging/methods , Animals , Cattle , Humans , Liver/pathology
3.
J Magn Reson Imaging ; 9(4): 531-8, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10232510

ABSTRACT

Relaxation time measurements at 3.0 T are reported for both gray and white matter in normal human brain. Measurements were made using a 3.0 T Bruker Biospec magnetic resonance imaging (MRI) scanner in normal adults with no clinical evidence of neurological disease. Nineteen subjects, 8 female and 11 male, were studied for T1 and T2 measurements, and 7 males were studied for T2. Measurements were made using a saturation recovery method for T1, a multiple spin-echo experiment for T2, and a fast low-angle shot (FLASH) sequence with 14 different echo times for T2. Results of the measurements are summarized as follows. Average T1 values measured for gray matter and white matter were 1331 and 832 msec, respectively. Average T2 values measured for gray matter and white matter were 80 and 110 msec, respectively. The average T2 values for occipital and frontal gray matter were 41.6 and 51.8 msec, respectively. Average T2 values for occipital and frontal white matter were 48.4 and 44.7 msec, respectively. ANOVA tests of the measurements revealed that for both gray and white matter there were no significant differences in T1 from one location in the brain to another. T2 in occipital gray matter was significantly higher (0.0001 < P < .0375) than the rest of the gray matter, while T2 in frontal white matter was significantly lower (P < 0.0001). Statistical analysis of cerebral hemispheric differences in relaxation time measurements showed no significant differences in T1 values from the left hemisphere compared with the right, except in insular gray matter, where this difference was significant at P = 0.0320. No significant difference in T2 values existed between the left and right cerebral hemispheres. Significant differences were apparent between male and female relaxation time measurements in brain.


Subject(s)
Brain/anatomy & histology , Magnetic Resonance Spectroscopy/methods , Adult , Analysis of Variance , Artifacts , Female , Humans , Magnetic Resonance Spectroscopy/instrumentation , Male , Middle Aged , Phantoms, Imaging/statistics & numerical data , Reference Values , Sex Characteristics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...