Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Biol Chem ; 277(9): 6960-6, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11742003

ABSTRACT

We have investigated the functional consequences of three P/Q-type Ca(2+) channel alpha1A (Ca(v)2.1alpha(1)) subunit mutations associated with different forms of ataxia (episodic ataxia type 2 (EA-2), R1279Stop, AY1593/1594D; progressive ataxia (PA), G293R). Mutations were introduced into human alpha1A cDNA and heterologously expressed in Xenopus oocytes or tsA-201 cells (with alpha(2)delta and beta1a) for electrophysiological and biochemical analysis. G293R reduced current density in both expression systems without changing single channel conductance. R1279Stop and AY1593/1594D protein were expressed in tsA-201 cells but failed to yield inward barium currents (I(Ba)). However, AY1593/1594D mediated I(Ba) when expressed in oocytes. G293R and AY1593/1594D shifted the current-voltage relationship to more positive potentials and enhanced inactivation during depolarizing pulses (3 s) and pulse trains (100 ms, 1 Hz). Mutation AY1593/1594D also slowed recovery from inactivation. Single channel recordings revealed a change in fast channel gating for G293R evident as a decrease in the mean open time. Our data support the hypothesis that a pronounced loss of P/Q-type Ca(2+) channel function underlies the pathophysiology of EA-2 and PA. In contrast to other EA-2 mutations, AY1593/1594D and G293R form at least partially functional channels.


Subject(s)
Ataxia/genetics , Ataxia/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/physiology , Calcium Channels/genetics , Calcium Channels/physiology , Mutation, Missense , Amino Acid Sequence , Animals , Cell Line , Cloning, Molecular , DNA, Complementary/metabolism , Electrophysiology , Humans , Kinetics , Molecular Sequence Data , Mutation , Oocytes/metabolism , Sequence Homology, Amino Acid , Time Factors , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...