Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 674
Filter
1.
Sci Rep ; 14(1): 13130, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849372

ABSTRACT

Dengue virus is a single positive-strand RNA virus that is composed of three structural proteins including capsid, envelope, and precursor membrane while seven non-structural proteins (NS1, NS2A, NS2B, NS3A, NS3B, NS4, and NS5). Dengue is a viral infection caused by the dengue virus (DENV). DENV infections are asymptomatic or produce only mild illness. However, DENV can occasionally cause more severe cases and even death. There is no specific treatment for dengue virus infections. Therapeutic peptides have several important advantages over proteins or antibodies: they are small in size, easy to synthesize, and have the ability to penetrate the cell membranes. They also have high activity, specificity, affinity, and less toxicity. Based on the known peptide inhibitor, the current study designs peptide inhibitors for dengue virus envelope protein using an alanine and residue scanning technique. By replacing I21 with Q21, L14 with H14, and V28 with K28, the binding affinity of the peptide inhibitors was increased. The newly designed peptide inhibitors with single residue mutation improved the binding affinity of the peptide inhibitors. The inhibitory capability of the new promising peptide inhibitors was further confirmed by the utilization of MD simulation and free binding energy calculations. The molecular dynamics simulation demonstrated that the newly engineered peptide inhibitors exhibited greater stability compared to the wild-type peptide inhibitors. According to the binding free energies MM(GB)SA of these developed peptides, the first peptide inhibitor was the most effective against the dengue virus envelope protein. All peptide derivatives had higher binding affinities for the envelope protein and have the potential to treat dengue virus-associated infections. In this study, new peptide inhibitors were developed for the dengue virus envelope protein based on the already reported peptide inhibitor.


Subject(s)
Antiviral Agents , Dengue Virus , Dengue , Peptides , Dengue Virus/drug effects , Peptides/chemistry , Peptides/pharmacology , Dengue/drug therapy , Dengue/virology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Humans , Drug Design , Molecular Dynamics Simulation , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/chemistry , Computer Simulation , Protein Binding
2.
Int J Phytoremediation ; : 1-15, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832561

ABSTRACT

The agro-waste derived valuable products are prime interest for effective management of toxic heavy metals (THMs). The present study investigated the efficacy of biochars (BCs) on immobilization of THMs (Cr, Zn, Pb, Cu, Ni and Cd), bioaccumulation and health risk. Agro-wastes derived BCs including wheat straw biochar (WSB), orange peel biochar (OPB), rice husk biochar (RHB) and their composite biochar (CB) were applied in industrial contaminated soil (ICS) at 1% and 3% amendments rates. All the BCs significantly decreased the bioavailable THMs and significantly (p < 0.001) reduced bioaccumulation at 3% application with highest efficiency for CB followed by OPB, WSB and RHB as compared to control treatment. The bioaccumulation factor (BAF), concentration index (CI) and ecological risk were decreased with all BCs. The hazard quotient (HQ) and hazard index (HI) of all THMs were <1, except Cd, while carcer risk (CR) and total cancer risk index (TCRI) were decreased through all BCs. The overall results depicted that CB at 3% application rate showed higher efficacy to reduce significantly (p < 0.001) the THMs uptake and reduced health risk. Hence, the present study suggests that the composite of BCs prepared from agro-wastes is eco-friendly amendment to reduce THMs in ICS and minimize its subsequent uptake in vegetables.


The present study has a scientific research scope, based on reduction of bioavailability and bioaccumulation of toxic heavy metals (THMs) by the addition of biochars derived from agro-wastes and their composite biochar (CB), thereby decreasing the potential health risk. Limited study has been conducted, especially on the impact of CB in THMs-contaminated soil. This study could fill the scientific research gap and provides useful information for mitigation of THMs present in contaminated soil, which could be followed by the Environmental Protection Agency, Ministry of Agriculture and farmers in degraded lands.

3.
J Mol Graph Model ; 131: 108792, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38797085

ABSTRACT

In the current quantum chemical study, indacenodithiophene donor core-based the end-capped alterations of the reference chromophore BTR drafted eight A2-A1-D-A1-A2 type small non-fullerene acceptors. All the computational simulations were executed under MPW1PW91/6-31G (d, p) level of DFT. The UV-Vis absorption, open circuit voltage, electron affinity, ionization potential, the density of states, reorganization energy, orbital analysis, and non-covalent interactions were studied and compared with BTR. Several molecules of our modeled series BT1-BT8 have shown distinctive features that are better than those of the BTR. The open circuit voltage (VOC) of BT5 has a favorable impact, allowing it to replace BTR in the field of organic solar cells. The charge carrier motilities for proposed molecules generated extraordinary findings when matched to the reference one (BTR). Further charge transmission was confirmed by creating the complex with a PM6 donor molecule. The remarkable dipole moment contributes to the formation of non-covalent bond interactions with chloroform, resulting in superior charge mobility. Based on these findings, it can be said that every tailored molecule has the potential to surpass chromophore molecule (BTR) in OSCs. So, all tailored molecules may enhance the efficiency of photovoltaic cells due to the involvement of potent terminal electron-capturing acceptor2 moieties. Considering these obtained results, these newly presented molecules can be regarded for developing efficient solar devices in the future.

4.
Sci Rep ; 14(1): 12588, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38822113

ABSTRACT

The COVID-19 has had a significant influence on people's lives across the world. The viral genome has undergone numerous unanticipated changes that have given rise to new varieties, raising alarm on a global scale. Bioactive phytochemicals derived from nature and synthetic sources possess lot of potential as pathogenic virus inhibitors. The goal of the recent study is to report new inhibitors of Schiff bases of 1,3-dipheny urea derivatives against SARS COV-2 spike protein through in-vitro and in-silico approach. Total 14 compounds were evaluated, surprisingly, all the compounds showed strong inhibition with inhibitory values between 79.60% and 96.00% inhibition. Here, compounds 3a (96.00%), 3d (89.60%), 3e (84.30%), 3f (86.20%), 3g (88.30%), 3h (86.80%), 3k (82.10%), 3l (90.10%), 3m (93.49%), 3n (85.64%), and 3o (81.79%) exhibited high inhibitory potential against SARS COV-2 spike protein. While 3c also showed significant inhibitory potential with 79.60% inhibition. The molecular docking of these compounds revealed excellent fitting of molecules in the spike protein receptor binding domain (RBD) with good interactions with the key residues of RBD and docking scores ranging from - 4.73 to - 5.60 kcal/mol. Furthermore, molecular dynamics simulation for 150 ns indicated a strong stability of a complex 3a:6MOJ. These findings obtained from the in-vitro and in-silico study reflect higher potency of the Schiff bases of 1,3-diphenyl urea derivatives. Furthermore, also highlight their medicinal importance for the treatment of SARS COV-2 infection. Therefore, these small molecules could be a possible drug candidate.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Schiff Bases , Spike Glycoprotein, Coronavirus , Urea , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Urea/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Humans , COVID-19 Drug Treatment , COVID-19/virology
5.
Sci Rep ; 14(1): 12475, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816444

ABSTRACT

Sirtuin 3 (SIRT3) belongs to the Sirtuin protein family, which consists of NAD+-dependent lysine deacylase, involved in the regulation of various cellular activities. Dysregulation of SIRT3 activity has been linked to several types of cancer, including breast cancer. Because of its ability to stimulate adaptive metabolic pathways, it can aid in the survival and proliferation of breast cancer cells. Finding new chemical compounds targeted towards SIRT3 was the primary goal of the current investigation. Virtual screening of ~ 800 compounds using molecular docking techniques yielded 8 active hits with favorable binding affinities and poses. Docking studies verified that the final eight compounds formed stable contacts with the catalytic domain of SIRT3. Those compounds have good pharmacokinetic/dynamic properties and gastrointestinal absorption. Based on excellent pharmacokinetic and pharmacodynamic properties, two compounds (MI-44 and MI-217) were subjected to MD simulation. Upon drug interaction, molecular dynamics simulations demonstrate mild alterations in the structure of proteins and stability. Binding free energy calculations revealed that compounds MI-44 (- 45.61 ± 0.064 kcal/mol) and MI-217 (- 41.65 ± 0.089 kcal/mol) showed the maximum energy, suggesting an intense preference for the SIRT3 catalytic site for attachment. The in-vitro MTT assay on breast cancer cell line (MDA-MB-231) and an apoptotic assay for these potential compounds (MI-44/MI-217) was also performed, with flow cytometry to determine the compound's ability to cause apoptosis in breast cancer cells. The percentage of apoptotic cells (including early and late apoptotic cells) increased from 1.94% in control to 79.37% for MI-44 and 85.37% for MI-217 at 15 µM. Apoptotic cell death was effectively induced by these two compounds in a flow cytometry assay indicating them as a good inhibitor of human SIRT3. Based on our findings, MI-44 and MI-217 merit additional investigation as possible breast cancer therapeutics.


Subject(s)
Breast Neoplasms , Molecular Docking Simulation , Sirtuin 3 , Sirtuin 3/metabolism , Sirtuin 3/antagonists & inhibitors , Sirtuin 3/chemistry , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Cell Line, Tumor , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Cell Proliferation/drug effects , Protein Binding
6.
J Mol Model ; 30(6): 190, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809306

ABSTRACT

CONTEXT: For the advancement in fields of organic and perovskite solar cells, various techniques of structural alterations are being employed on previously reported chromophores. In this study, the end-capped engineering is carried out on DBT-4F (R) by modifying terminal acceptors to improve optoelectronic and photovoltaic attributes. Seven molecules (AD1-AD7) are modeled using different push-pull acceptors. DFT/B3LYP/6-31G along with its time-dependent approach (TD-DFT) are on a payroll to investigate ground state geometries, absorption maxima (λmax), energy gap (Eg), excitation energy (Ex), internal reorganization energy, light harvesting efficiency (LHE), dielectric constant, open circuit voltage (VOC), fill factor (FF), etc. of OSCs. AD1 displayed the lowest band gap (1.76 eV), highest λmax (876 nm), lowest Ex (1.41 eV), and lowest binding energy (0.21 eV). Among various calculated parameters, all of the sketched molecules demonstrated greater dielectric constant when compared to R. The highest dielectric constant was exhibited by AD3 (56.26). AD5 exhibited maximum LHE (0.9980). Lower reorganization energies demonstrated improved charge mobility. AD5 and AD7 (1.63 and 1.68 eV) have higher values of VOC than R (1.51 eV). All novel molecules having outperforming attributes will be better candidates to enhance the efficacy of OSCs for future use. METHODS: Precisely, a DFT and TD-DFT analysis on all of the proposed organic molecules were conducted, using the functional MPW1PW91 at 6-31G (d,p) basis set to examine their optoelectronic aspects, additionally the solvent-state computations were studied with a TD-SCF simulation. For all these simulations, Guassian 09 and GuassView 5.0 were employed. Moreover, the Origin 6.0, Multiwfn 3.8, and PyMOlyze 1.1 software were utilized for the visual depiction of the graphs of absorption, TDM, and DOS, respectively of the studied molecules. A number of crucial aspects such as FMOs, bandgaps, light-harvesting efficiency, electrostatic potential, dipole moment, ionization potential, open-circuit voltage, fill factor, binding energy, interaction coefficient, chemical hardness-softness, and electrophilicity index were also investigated for the studied molecules.

7.
Environ Sci Pollut Res Int ; 31(23): 34396-34414, 2024 May.
Article in English | MEDLINE | ID: mdl-38702486

ABSTRACT

Groundwater contamination with arsenic (As) is a significant concern in Pakistan's Punjab Province. This study analyzed 69 groundwater samples from Faisalabad, Gujranwala, Lahore, and Multan to understand hydrogeochemistry, health impacts, contamination sources, and drinking suitability. Results revealed varying as concentrations across districts, with distinctive cation and anion orders. Faisalabad exhibited Na+ > Mg2+ > Ca2+ > K+ > Fe2+ for cations and SO42- > Cl- > HCO3- > NO3- > F- for anions. Gujranwala showed Na+ > Ca2+ > Mg2+ > K+ for cations and HCO3- > SO42- > Cl- > NO3- > F- for anions. In Lahore, demonstrated: Na+ > Ca2+ > Mg2+ > Fe > K+ for cations and HCO3- > SO42- > Cl- > NO3- > F- for anions. Multan indicated K+ > Ca2+ > Mg2+ > Na+ > Fe for cations and HCO3- > SO42- > Cl- > F- > NO3- ) for anions. Hydrochemical facies were identified as CaHCO3 and CaMgCl types. Principal Component Analysis (PCA), highlighted the influence of natural processes and human activities on groundwater pollution. Water Quality Index (WQI) result reveal that most samples met water quality standards. The carcinogenic risk values for children exceeded permissible limits in all districts, emphasizing a significant cancer risk. The study highlights the need for rigorous monitoring to mitigate (As) contamination and protect public health from associated hazards.


Subject(s)
Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Water Quality , Groundwater/chemistry , Pakistan , Water Pollutants, Chemical/analysis , Arsenic/analysis , Humans
8.
Trends Ecol Evol ; 39(6): 512-514, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744626

ABSTRACT

Organic and conventional farms often coexist, yet their proximity does not ensure compatibility. Larsen et al. reveal that being surrounded by organic fields reduces pesticide usage in organic fields but increases it in conventional fields. We discuss these findings, emphasizing the need to cluster organic croplands for reduced pesticide use.


Subject(s)
Organic Agriculture , Pesticides , Crops, Agricultural
9.
PeerJ Comput Sci ; 10: e1998, 2024.
Article in English | MEDLINE | ID: mdl-38699207

ABSTRACT

Online transactions are still the backbone of the financial industry worldwide today. Millions of consumers use credit cards for their daily transactions, which has led to an exponential rise in credit card fraud. Over time, many variations and schemes of fraudulent transactions have been reported. Nevertheless, it remains a difficult task to detect credit card fraud in real-time. It can be assumed that each person has a unique transaction pattern that may change over time. The work in this article aims to (1) understand how deep reinforcement learning can play an important role in detecting credit card fraud with changing human patterns, and (2) develop a solution architecture for real-time fraud detection. Our proposed model utilizes the Deep Q network for real-time detection. The Kaggle dataset available online was used to train and test the model. As a result, a validation performance of 97.10% was achieved with the proposed deep learning component. In addition, the reinforcement learning component has a learning rate of 80%. The proposed model was able to learn patterns autonomously based on previous events. It adapts to the pattern changes over time and can take them into account without further manual training.

10.
J Neurosurg ; : 1-8, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701528

ABSTRACT

OBJECTIVE: This study was conducted to investigate the impact of antiplatelet administration in the periprocedural period on the occurrence of thromboembolic complications (TECs) in patients undergoing treatment using the Woven EndoBridge (WEB) device for intracranial wide-necked bifurcation aneurysms. The primary objective was to assess whether the use of antiplatelets in the pre- and postprocedural phases reduces the likelihood of developing TECs, considering various covariates. METHODS: A retrospective multicenter observational study was conducted within the WorldWideWEB Consortium and comprised 38 academic centers with endovascular treatment capabilities. Univariable and multivariable logistic regression analyses were performed to determine the association between antiplatelet use and TECs, adjusting for covariates. Missing predictor data were addressed using multiple imputation. RESULTS: The study comprised two cohorts: one addressing general thromboembolic events and consisting of 1412 patients, among whom 103 experienced TECs, and another focusing on symptomatic thromboembolic events and comprising 1395 patients, of whom 50 experienced symptomatic TECs. Preprocedural antiplatelet use was associated with a reduced likelihood of overall TECs (OR 0.32, 95% CI 0.19-0.53, p < 0.001) and symptomatic TECs (OR 0.49, 95% CI 0.25-0.95, p = 0.036), whereas postprocedural antiplatelet use showed no significant association with TECs. The study also revealed additional predictors of TECs, including stent use (overall: OR 4.96, 95% CI 2.38-10.3, p < 0.001; symptomatic: OR 3.24, 95% CI 1.26-8.36, p = 0.015), WEB single-layer sphere (SLS) type (overall: OR 0.18, 95% CI 0.04-0.74, p = 0.017), and posterior circulation aneurysm location (symptomatic: OR 18.43, 95% CI 1.48-230, p = 0.024). CONCLUSIONS: The findings of this study suggest that the preprocedural administration of antiplatelets is associated with a reduced likelihood of TECs in patients undergoing treatment with the WEB device for wide-necked bifurcation aneurysms. However, postprocedural antiplatelet use did not show a significant impact on TEC occurrence.

11.
J Neurosurg ; : 1-14, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728758

ABSTRACT

OBJECTIVE: The recent introduction of the Woven EndoBridge (WEB) has presented an alternative treatment modality for intracranial bifurcation and wide-neck aneurysms with a growing body of literature evaluating its efficacy. However, no previous systematic review has focused on comparing WEB with previously using endovascular approaches, specifically primary coiling (PC) and stent-assisted coiling (SAC). Herein, the authors present the first systematic review summarizing available literature to reach a consensus regarding the safety and effectiveness of WEB. METHODS: A systematic review of articles identified through a search of PubMed, Embase, Scopus, and Web of Science was conducted. Studies were included if they compared WEB with PC or SAC from any aspect for intracranial aneurysms. Risk of bias was assessed using the Risk of Bias in Non-Randomized Studies-of Interventions tool. Meta-analyses of the outcomes based on stent use and rupture status were performed. RESULTS: A total of 16 studies were included. The three endovascular approaches were comparable in terms of baseline characteristics except for older age and smaller aneurysm neck in the PC group (p < 0.05). Moreover, the follow-up duration was shorter in the WEB group (p < 0.05). Although the WEB group demonstrated lower complete and adequate immediate occlusion rates (p < 0.01), the rates at follow-up evaluations were comparable with SAC and PC (p = 0.61 and p = 0.27, respectively). The WEB group experienced significantly fewer unfavorable neurological outcomes than the SAC group (p = 0.04), while comparable to the PC group (p = 0.36). Retreatment rates were comparable between WEB and coiling (p = 0.92). The WEB group had fewer hemorrhagic and thromboembolic complications (p < 0.01 and p = 0.01, respectively), with similar neurological and procedure-related complications compared with combined PC and SAC groups. Lastly, mortality was comparable among the different endovascular approaches. CONCLUSIONS: This study provides evidence on the noninferiority of WEB compared with PC and SAC in terms of angiographic outcomes. Meanwhile, our findings on lower complication rates, cost, and improved operative aspects associated with WEB establish this novel endovascular treatment as a safe and effective alternative for the treatment of bifurcation and wide-neck aneurysms.

12.
Interv Neuroradiol ; : 15910199241247255, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613377

ABSTRACT

Thromboembolism is a complication of neurointerventional procedures that requires patients to be placed under antiplatelet therapy. Current options for antiplatelet therapies have a delayed onset of action that prevents a rapid door to puncture transition for patents presenting in acute settings. Cangrelor (Kengreal, Chiesi, USA) is an intravenous P2Y12 platelet inhibitor approved in percutaneous coronary interventions that has an immediate onset of action and half-life between 2 and 6 min. Thus, the goal of this study is to report on the safety, effectiveness, and indications for using Cangrelor in neurointerventional procedures. A systematic review of studies describing the use of Cangrelor in neurointervention was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The search was conducted on PubMed, Ovid Medline, and Embase databases through June 2023. Seventeen studies with 314 patients met inclusion criteria. The most common indication for Cangrelor use was acute ischemic strokes: 70% followed by aneurysms 27.4%. The Infusion protocol varied from 5 to 30 µg/kg bolus and 1 to 4 µg/kg/min infusion with 30 µg/kg bolus and 4 µg/kg/min infusion being reported in 64.7% of studies. Intra-operative platelet reacting unit levels were below 200 in all the studies that reported it, and the percentage of hemorrhagic, thromboembolic, and deaths occurrence in this patient cohort was respectively 11.1%, 4.8%, and 8.6%. Cangrelor appears to be a promising P2Y12 platelet inhibitor for neurointerventional procedures. However, large, randomized trials are needed to determine the full range of its effects in neurointerventional procedures.

13.
Curr Med Chem ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38616761

ABSTRACT

BACKGROUND/AIM: Glioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations. METHOD: Approximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, i.e., epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively. RESULTS: Among those hits, four natural products (SBEH-40, QUER, QTME-12, and HCFR) exerted dual inhibitory effects on EGFR and PI3K in our in-silico analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds SBEH-40, QUER, andQTME-12 exhibited significant anti-proliferative capability with IC50 values of 11.97 ± 0.73 µM, 28.27 ± 1.52 µM, and 22.93 ± 1.63 µM respectively, while HCFR displayed weak inhibitory potency (IC50 = 74.97 ± 2.30 µM). CONCLUSION: This study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.

14.
Curr Med Chem ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38591207

ABSTRACT

BACKGROUND/AIM: The global pandemic caused by the novel SARS-CoV-2 virus underscores the urgent need for therapeutic interventions. Targeting the virus's main protease (Mpro), crucial for viral replication, is a promising strategy. OBJECTIVE: The current study aims to discover novel inhibitors of Mpro. METHODS: The current study identified five natural compounds (myrrhanol B (C1), myrrhanone B (C2), catechin (C3), quercetin (C4), and feralolide (C5) with strong inhibitory potential against Mpro through virtual screening and computational methods, predicting their binding efficiencies and validated it using the in-vitro inhibition activity. The selected compound's toxicity was examined using the MTT assay on a human BJ cell line. RESULTS: Compound C1 exhibited the highest binding affinity, with a docking score of -9.82 kcal/mol and strong hydrogen bond interactions within Mpro's active site. A microscale molecular dynamics simulation confirmed the stability and tight fit of the compounds in the protein's active pocket, showing superior binding interactions. in vitro assays validated their inhibitory effects, with C1 having the most significant potency (IC50 = 2.85 µM). The non-toxic nature of these compounds in human BJ cell lines was also confirmed, advocating their safety profile. CONCLUSION: These findings highlight the effectiveness of combining computational and experimental approaches to identify potential lead compounds for SARS-CoV-2, with C1-C5 emerging as promising candidates for further drug development against this virus.

15.
ACS Omega ; 9(15): 17137-17142, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645367

ABSTRACT

In certain low-income nations, the hepatitis Delta virus and hepatitis B virus (HBV) pose a serious medical burden, where the prevalence of hepatitis B surface antigen (HBsAg) is greater than 8%. Especially in rural places, irregular diagnostic exams are the main restriction and reason for underestimation. Utilizing serum samples from a Pakistani isolate, an internal ELISA for the quick identification of anti-HDV was created, and the effectiveness of the test was compared to a commercial diagnostic kit. HDV-positive serum samples were collected, and a highly antigenic domain of HDAg antigen was derived from them. This antigenic HDAg was expressed in a bacterial expression system, purified by Ni-chromatography, and confirmed by SDS-PAGE and Western blot analysis. The purified antigen was utilized to develop an in-house ELISA assay for anti-HDV antibody detection of the patient's serum samples at very low cost. Purified antigens and positive and negative controls can detect anti-HDV (antibodies) in ELISA plates. The in-house developed kit's efficiency was compared with that of a commercial kit (Witech Inc., USA) by the mean optical density values of both kits. No significant difference was observed (a P value of 0.576) by applying statistical analysis. The newly developed in-house ELISA is equally efficient compared to commercial kits, and these may be useful in regular diagnostic laboratories, especially for analyzing local isolates.

16.
Mol Biol Rep ; 51(1): 537, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642174

ABSTRACT

BACKGROUND: Hexaploid bread wheat underwent a series of polyploidization events through interspecific hybridizations that conferred adaptive plasticity and resulted in duplication and neofunctionalization of major agronomic genes. The genetic architecture of polyploid wheat not only confers adaptive plasticity but also offers huge genetic diversity. However, the contribution of different gene copies (homeologs) encoded from different subgenomes (A, B, D) at different growth stages remained unexplored. METHODS: In this study, hybrid of elite cultivars of wheat were developed via reciprocal crosses (cytoplasm swapping) and phenotypically evaluated. We assessed differential expression profiles of yield-related negative regulators in these cultivars and their F1 hybrids and identified various cis-regulatory signatures by employing bioinformatics tools. Furthermore, the preferential expression patterns of the syntenic triads encoded from A, B, and D subgenomes were assessed to decipher their functional redundancy at six different growth stages. RESULTS: Hybrid progenies showed better heterosis such as up to 17% increase in the average number of grains and up to 50% increase in average thousand grains weight as compared to mid-parents. Based on the expression profiling, our results indicated significant dynamic transcriptional expression patterns, portraying the different homeolog-dominance at the same stage in the different cultivars and their hybrids. Albeit belonging to same syntenic triads, a dynamic trend was observed in the regulatory signatures of these genes that might be influencing their expression profiles. CONCLUSION: These findings can substantially contribute and provide insights for the selective introduction of better cultivars into traditional and hybrid breeding programs which can be harnessed for the improvement of future wheat.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Hybridization, Genetic , Hybrid Vigor/genetics
17.
Sci Rep ; 14(1): 7752, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565858

ABSTRACT

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Subject(s)
Composting , Greenhouse Gases , Soil , Agriculture/methods , Triticum , Carbon , Charcoal , Sodium Chloride , Sodium Chloride, Dietary , Nitrous Oxide/analysis , Carbon Dioxide/analysis
18.
Bull Environ Contam Toxicol ; 112(4): 54, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565781

ABSTRACT

Contamination of aquatic and terrestrial environment with hexavalent chromium Cr(VI) is one of the major hazards worldwide due its carcinogenicity, persistency and immobility. Different research techniques have been adopted for Cr(VI) remediation present in terrestrial and aquatic media, while adsorption being the most advance, low cost, environmentally friendly and common method. The present study discussed the mechanisms of Parthenium hysterophorus derived biochar, iron-doped zinc oxide nanoparticles (nFe-ZnO) and Fe-ZnO modified biochar (Fe-ZnO@BC) involved in Cr(VI) mobility and bioavailability. Pot experiments were conducted to study the effect of Parthenium hysterophorus derived biochar, nFe-ZnO and Fe-ZnO@BC application rates (2%, 2 mg/kg, 10 mg/kg, respectively). The results indicated that the addition of soil amendments reduced Cr(VI) mobility. The findings revealed that the reduction in chromium mobility was observed by P. hysterophorus BC, and Fe-ZnO@BC but nFe-ZnO application significantly (p = 0.05) reduced Cr(VI) and CrT uptake as compared to the control treatments. The results of SEM coupled with EDS showed a high micropores and channel, smooth surface which helped in adsorption, and may enhance soil conditions. The concentration index (CI) by different amendments in trifolium plant was followed the descending order as: nFe-ZnO > Fe-ZnO@BC > P. hysterophorus BC after 30, 60 and 90 days of harvesting, respectively. In addition, human health risk index was found less than one (H1 < 1.0) in amended soils as compared to control treatments.


Subject(s)
Ferric Compounds , Trifolium , Water Pollutants, Chemical , Zinc Oxide , Humans , Zinc , Charcoal , Chromium , Iron , Soil , Adsorption
19.
Chemosphere ; 356: 141932, 2024 May.
Article in English | MEDLINE | ID: mdl-38593955

ABSTRACT

The presence of heavy metals in water pose a serious threat to both public and environmental health. However, the advances in the application of low cost biochar based adsorbent synthesize from various feedstocks plays an effective role in the of removal heavy metals from water. This study implies the introduction of novel method of converting food waste (FW) to biochar through pyrolysis, examine its physiochemical characteristics, and investigate its adsorption potential for the removal of heavy metals from water. The results revealed that biochar yield decreased from 18.4 % to 14.31 % with increase in pyrolysis temperature from 350 to 550 °C. Likewise, increase in the pyrolysis temperature also resulted in the increase in the ash content from 39.87 % to 42.05 % thus transforming the biochar into alkaline nature (pH 10.17). The structural and chemical compositions of biochar produced at various temperatures (350, 450, and 550 °C) showed a wide range of mineralogical composition, and changes in the concentration of surface functional groups. Similarly, the adsorption potential showed that all the produced biochar effectively removed the selected heavy metals from wastewater. However a slightly high removal capacity was observed for biochar produced at 550 °C that was credited to the alkaline nature, negatively charged biochar active sites due to O-containing functional groups and swelling behavior. The results also showed that the maximum adsorption was recorded at pH 8 at adsorbent dose of 2.5 g L-1 with the contact time of 120 min. To express the adsorption equilibrium, the results were subjected to Langmuir and Freundlich isotherms and correlation coefficient implies that the adsorption process follows the Freundlich adsorption isotherm. The findings of this study suggest the suitability of the novel FW derived biochar as an effective and low cost adsorbent for the removal of heavy metals form wastewater.


Subject(s)
Charcoal , Metals, Heavy , Wastewater , Water Pollutants, Chemical , Charcoal/chemistry , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Wastewater/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Pyrolysis , Food , Food Loss and Waste
20.
Sensors (Basel) ; 24(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474959

ABSTRACT

In this paper, a novel Multi-Objective Hypergraph Particle Swarm Optimization (MOHGPSO) algorithm for structural health monitoring (SHM) systems is considered. This algorithm autonomously identifies the most relevant sensor placements in a combined fitness function without artificial intervention. The approach utilizes six established Optimal Sensor Placement (OSP) methods to generate a Pareto front, which is systematically analyzed and archived through Grey Relational Analysis (GRA) and Fuzzy Decision Making (FDM). This comprehensive analysis demonstrates the proposed approach's superior performance in determining sensor placements, showcasing its adaptability to structural changes, enhancement of durability, and effective management of the life cycle of structures. Overall, this paper makes a significant contribution to engineering by leveraging advancements in sensor and information technologies to ensure essential infrastructure safety through SHM systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...