Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 365: 62-71, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36804577

ABSTRACT

V160 is a viral vaccine candidate against human cytomegalovirus (HCMV) that is manufactured using Adult Retinal Pigment Epithelial cells (ARPE-19) grown on Cytodex-1 microcarriers. The microcarriers are generally hydrated, washed, and autoclaved prior to use, which can be limiting at large production scales. To minimize microcarrier preparation and sterilization, the use of gamma irradiated Cytodex-1 was investigated. Similar ARPE-19 cell growth was observed on heat-sterilized and gamma irradiated Cytodex-1; however, significantly reduced virus production was observed in cultures exposed to gamma irradiated Cytodex-1. Additional experiments suggest that infection inhibition is not exclusive to ARPE-19 but is most directly linked to HCMV V160, as evidenced by similar inhibition of V160 with Vero cells and no inhibition of Measles virus with either cell type. These observations suggest a putative impact on HCMV infection from the presence of extractable(s)/leachable(s) in the gamma irradiated microcarriers. Thorough aseptic rinsing of gamma irradiated Cytodex-1 prior to use can mitigate this impact and enable comparable process performance to heat-sterilized Cytodex-1. Though not fully a "ready-to-use" product for the HCMV V160 production process, utilization of Cytodex-1 microcarriers was possible without requiring heat sterilization, suggesting a potential path forward for large scale production of V160.


Subject(s)
Cytomegalovirus Vaccines , Cytomegalovirus , Adult , Animals , Chlorocebus aethiops , Humans , Vero Cells , Epithelial Cells
2.
Virology ; 403(2): 111-27, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20451234

ABSTRACT

RotaTeq is a pentavalent rotavirus vaccine that contains five human-bovine reassortant strains (designated G1, G2, G3, G4, and P1) on the backbone of the naturally attenuated tissue culture-adapted parental bovine rotavirus (BRV) strain WC3. The viral genomes of each of the reassortant strains were completely sequenced and compared pairwise and phylogenetically among each other and to human rotavirus (HRV) and BRV reference strains. Reassortants G1, G2, G3, and G4 contained the VP7 gene from their corresponding HRV parent strains, while reassortants G1 and G2 also contained the VP3 gene (genotype M1) from the HRV parent strain. The P1 reassortant contained the VP4 gene from the HRV parent strain and all the other gene segments from the BRV WC3 strain. The human VP7s had a high level of overall amino acid identity (G1: 95-99%, G2: 94-99% G3: 96-100%, G4: 93-99%) when compared to those of representative rotavirus strains of their corresponding G serotypes. The VP4 of the P1 reassortant had a high identity (92-97%) with those of serotype P1A[8] HRV reference strains, while the BRV VP7 showed identities ranging from 91% to 94% to those of serotype G6 HRV strains. Sequence analyses of the BRV or HRV genes confirmed that the fundamental structure of the proteins in the vaccine was similar to those of the HRV and BRV references strains. Sequences analyses showed that RotaTeq exhibited a high degree of genetic stability as no mutations were identified in the material of each reassortant, which undergoes two rounds of replication cycles in cell culture during the manufacturing process, when compared to the final material used to fill the dosing tubes. The infectivity of each of the reassortant strains of RotaTeq, like HRV strains, did not require the presence of sialic acid residues on the cell surface. The molecular and biologic characterization of RotaTeq adds to the significant body of clinical data supporting the consistent efficacy, immunogenicity, and safety of RotaTeq.


Subject(s)
Reassortant Viruses/genetics , Rotavirus Vaccines , Rotavirus/genetics , Amino Acid Sequence , Animals , Cattle , Cluster Analysis , Genomic Instability , Humans , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Vaccines, Attenuated , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...