Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37848203

ABSTRACT

Microbial challenge in-use studies are performed to evaluate the potential for microbial proliferation in preservative-free single dose biological products after first puncture and potential accidental contamination during dose preparation (e.g. reconstitution, dilution) and storage. These studies, in addition to physicochemical in-use stability assessments, are used as part of product registration to define in-use hold times in Prescribing Information and in the pharmacy manual in the case of clinical products. There are no formal guidance documents describing regulator expectations on how to conduct microbial challenge in-use studies and interpret microbial data to assign in-use storage hold-times. In lieu of guidance, US Food and Drug Administration (FDA) regulators have authored publications and presentations describing regulator expectations. Insufficient or unavailable microbial challenge data can result in shortened in-use hold times, thus microbial challenge data enables flexibility for health care providers (HCPs) and patients, while ensuring patient safety. A cross-industry/FDA in-use microbial working group was formed through the Innovation & Quality (IQ) Consortium to gain alignment among industry practice and regulator expectations. The working group assessed regulatory guidance, current industry practice via a blinded survey of IQ Consortium member companies, and scientific rationale to align on recommendations for experimental design, execution of microbial challenge in-use studies, and a decision tree for microbial data interpretation to assign in-use hold times. Besides the study execution and data interpretation, additional considerations are discussed including use of platform data for clinical stage products, closed system transfer devices (CSTDs), transport of dose solutions, long infusion times, and the use of USP <797> by HCPs for preparing sterile drugs for administration. The recommendations provided in this manuscript will help streamline biological product development, ensure consistency on assignment of in-use hold times in biological product labels across industry, and provide maximum allowable flexibility to HCPs and patients, while ensuring patient safety.

2.
Biologicals ; 44(5): 434-40, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27470947

ABSTRACT

A phenomenon initially reported by Chen and Vinther in 2013 [1], and now commonly referred to as low endotoxin recovery (LER), has prompted the Food and Drug Administration (FDA) to request specific data demonstrating the capability of the LAL BET method (i.e., USP <85>) to recover endotoxin from spiked samples over time. The results of these spike/hold recovery studies are expected to be included in the Biologics License Applications (BLA) for review by the Center for Drug Evaluation and Research (CDER) Hughes (2014) and Hughes et al. (2015) [2,3]. Such studies involve spiking a known amount of a surrogate endotoxin, such as purified lipopolysaccharide (LPS), into undiluted biological products and then testing at different time points to determine the recovery over time. We report here the experience and learning gained from conducting spike/hold recovery studies for a monoclonal antibody (Mab) product. Results from initial hold studies spiked with purified LPS showed rapid loss of endotoxin activity in the drug substance (DS) and significant batch-to-batch variation in the drug product (DP). After careful review and examination of the experimental details, it was determined that the study design and execution differed from the routine batch release USP <85> BET method with regard to mixing time and sampling scheme. The hold study design was subsequently revised so that the mixing time and sampling were the same as the verified USP <85> BET method used for routine batch release testing. The spike/hold recovery studies were repeated and the results demonstrated that LPS could be consistently recovered over time. These findings highlight the importance of carefully controlling sample preparation procedures in a spike/hold recovery study in order to demonstrate the suitability of using the LAL BET method for endotoxin detection.


Subject(s)
Limulus Test/methods , Lipopolysaccharides/analysis , Lipopolysaccharides/chemistry
3.
PDA J Pharm Sci Technol ; 68(5): 472-7, 2014.
Article in English | MEDLINE | ID: mdl-25336418

ABSTRACT

The inability to detect endotoxin using compendia methods is a potential safety concern for patients due to the lack of endotoxin removal capabilities at the fill-finish stage in typical aseptic biologic drug product manufacturing. We have successfully demonstrated endotoxin challenge study recovery methodology using mammalian cell-produced biologic drug products and drug substances in citrate, histidine, phosphate, and sodium acetate buffer formulations containing polysorbate, challenged with an endotoxin analyte, for up to 6 months of storage. Successful recovery was similarly demonstrated for a preserved, peptide-containing drug product formulation. To isolate a potential masking-or low-endotoxin recovery-source, additional studies were performed to evaluate factors including product manufacturing contact surfaces, drug product matrix with and without polysorbate, individual matrix components, protein concentration, reagent suppliers, an orthogonal test method, and storage conditions. In all cases, acceptable recoveries were observed. Bacterial endotoxin is known to be chemically stable at physiological conditions. Purified endotoxin in aqueous conditions is likely to self-aggregate or bind to surfaces. Neither the nature of, nor the storage conditions of, the studied formulation matrices were shown experimentally to render the challenge endotoxin biologically inactive. The results highlight the importance of appropriate study design in assessing the recovery of endotoxins. LAY ABSTRACT: Bacterial endotoxin is a Gram-negative bacterial cell wall component that is harmful to humans at threshold concentrations, and it is not expected to be in aseptically-produced pharmaceutical medicines. It has been suggested that endotoxin cannot be detected over time in certain biopharmaceutical drug product formulations containing citrate, phosphate, and polysorbate components via an unknown masking mechanism. We have generated and present data here that indicate that endotoxin can be recovered in a variety of matrices, and under various experimental conditions.


Subject(s)
Bacteriological Techniques , Biological Products/analysis , Biopharmaceutics/methods , Drug Contamination , Limulus Test , Lipopolysaccharides/analysis , Technology, Pharmaceutical/methods , Citrates/chemistry , Consumer Product Safety , Drug Storage , Humans , Patient Safety , Polysorbates/chemistry , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...