Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 19(11): e1011627, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37956215

ABSTRACT

Benznidazole is the front-line drug used to treat infections with Trypanosoma cruzi, the causative agent of Chagas disease. However, for reasons that are unknown, treatment failures are common. When we examined parasites that survived benznidazole treatment in mice using highly sensitive in vivo and ex vivo bioluminescence imaging, we found that recrudescence is not due to persistence of parasites in a specific organ or tissue that preferentially protects them from drug activity. Surviving parasites are widely distributed and located in host cells where the vast majority contained only one or two amastigotes. Therefore, infection relapse does not arise from a small number of intact large nests. Rather, persisters are either survivors of intracellular populations where co-located parasites have been killed, or amastigotes in single/low-level infected cells exist in a state where they are less susceptible to benznidazole. To better assess the nature of parasite persisters, we exposed infected mammalian cell monolayers to a benznidazole regimen that reduces the intracellular amastigote population to <1% of the pre-treatment level. Of host cells that remained infected, as with the situation in vivo, the vast majority contained only one or two surviving intracellular amastigotes. Analysis, based on non-incorporation of the thymidine analogue EdU, revealed these surviving parasites to be in a transient non-replicative state. Furthermore, treatment with benznidazole led to widespread parasite DNA damage. When the small number of parasites which survive in mice after non-curative treatment were assessed using EdU labelling, this revealed that these persisters were also initially non-replicative. A possible explanation could be that triggering of the T. cruzi DNA damage response pathway by the activity of benznidazole metabolites results in exit from the cell cycle as parasites attempt DNA repair, and that metabolic changes associated with non-proliferation act to reduce drug susceptibility. Alternatively, a small percentage of the parasite population may pre-exist in this non-replicative state prior to treatment.


Subject(s)
Chagas Disease , Nitroimidazoles , Parasites , Trypanocidal Agents , Trypanosoma cruzi , Animals , Mice , Trypanosoma cruzi/genetics , Nitroimidazoles/pharmacology , Chagas Disease/parasitology , DNA Damage , Trypanocidal Agents/pharmacology , Trypanocidal Agents/metabolism , Mammals
2.
Infect Immun ; 90(2): e0038221, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34780279

ABSTRACT

Trypanosoma cruzi is the etiological agent of Chagas disease. Following T cell-mediated suppression of acute-phase infection, this intracellular eukaryotic pathogen persists long-term in a limited subset of tissues at extremely low levels. The reasons for this tissue-specific chronicity are not understood. Using a dual bioluminescent-fluorescent reporter strain and highly sensitive tissue imaging that allows experimental infections to be monitored at single-cell resolution, we undertook a systematic analysis of the immunological microenvironments of rare parasitized cells in the mouse colon, a key site of persistence. We demonstrate that incomplete recruitment of T cells to a subset of colonic infection foci permits the occurrence of repeated cycles of intracellular parasite replication and differentiation to motile trypomastigotes at a frequency sufficient to perpetuate chronic infections. The lifelong persistence of parasites in this tissue site continues despite the presence, at a systemic level, of a highly effective T cell response. Overcoming this low-level dynamic host-parasite equilibrium represents a major challenge for vaccine development.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Chagas Disease/parasitology , Colon , Mice , T-Lymphocytes , Trypanosoma cruzi/physiology
3.
Curr Pharm Des ; 27(14): 1733-1740, 2021.
Article in English | MEDLINE | ID: mdl-33234096

ABSTRACT

Chagas disease results from infection with the trypanosomatid parasite Trypanosoma cruzi. Progress in developing new drugs has been hampered by the long term and complex nature of the condition and by our limited understanding of parasite biology. Technical difficulties in assessing the parasite burden during the chronic stage of infection have also proven to be a particular challenge. In this context, the development of noninvasive, highly sensitive bioluminescence imaging procedures based on parasites that express a red-shifted luciferase has greatly enhanced our ability to monitor infections in experimental models. Applications of this methodology have led to new insights into tissue tropism and infection dynamics and have been a major driver in drug development. The system has been further modified by the generation of parasite reporter lines that express bioluminescent:fluorescent fusion proteins, an advancement that has allowed chronic infections in mice to be examined at a cellular level. By exploiting bioluminescence, to identify the rare sites of tissue infection, and fluorescence to detect T. cruzi at the level of individual host cells in histological sections, it has been possible to investigate the replication and differentiation status of parasites in vivo and to examine the cellular environment of infection foci. In combination, these data provide a framework for the detailed dissection of disease pathogenesis and drug activity.


Subject(s)
Chagas Disease , Pharmaceutical Preparations , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Coloring Agents , Fluorescence , Mice , Trypanosoma cruzi/genetics
4.
Parasite Immunol ; 43(2): e12786, 2021 02.
Article in English | MEDLINE | ID: mdl-32799361

ABSTRACT

Trypanosoma cruzi is a remarkably versatile parasite. It can parasitize almost any nucleated cell type and naturally infects hundreds of mammal species across much of the Americas. In humans, it is the cause of Chagas disease, a set of mainly chronic conditions predominantly affecting the heart and gastrointestinal tract, which can progress to become life threatening. Yet around two thirds of infected people are long-term asymptomatic carriers. Clinical outcomes depend on many factors, but the central determinant is the nature of the host-parasite interactions that play out over the years of chronic infection in diverse tissue environments. In this review, we aim to integrate recent developments in the understanding of the spatial and temporal dynamics of T. cruzi infections with established and emerging concepts in host immune responses in the corresponding phases and tissues.


Subject(s)
Carrier State/immunology , Chagas Disease/immunology , Host-Parasite Interactions , Trypanosoma cruzi/immunology , Animals , Antibodies/immunology , Carrier State/parasitology , Humans , Immunity, Cellular , Signal Transduction
5.
Open Biol ; 10(12): 200261, 2020 12.
Article in English | MEDLINE | ID: mdl-33321060

ABSTRACT

Chronic Trypanosoma cruzi infections are typically lifelong, with small numbers of parasites surviving in restricted tissue sites, which include the gastrointestinal tract. There is considerable debate about the replicative status of these persistent parasites and whether there is a role for dormancy in long-term infection. Here, we investigated T. cruzi proliferation in the colon of chronically infected mice using 5-ethynyl-2'deoxyuridine incorporation into DNA to provide 'snapshots' of parasite replication status. Highly sensitive imaging of the extremely rare infection foci, at single-cell resolution, revealed that parasites are three times more likely to be in S-phase during the acute stage than during the chronic stage. By implication, chronic infections of the colon are associated with a reduced rate of parasite replication. Despite this, very few host cells survived infection for more than 14 days, suggesting that T. cruzi persistence continues to involve regular cycles of replication, host cell lysis and re-infection. We could find no evidence for wide-spread dormancy in parasites that persist in this tissue reservoir.


Subject(s)
Chagas Disease/parasitology , Colon , Host-Parasite Interactions , Trypanosoma cruzi/physiology , Animals , Chronic Disease , Disease Models, Animal , Mice , Myocytes, Smooth Muscle/parasitology , Parasite Load
6.
mBio ; 11(4)2020 08 04.
Article in English | MEDLINE | ID: mdl-32753495

ABSTRACT

Infections with Trypanosoma cruzi are usually lifelong despite generating a strong adaptive immune response. Identifying the sites of parasite persistence is therefore crucial to understanding how T. cruzi avoids immune-mediated destruction. However, this is a major technical challenge, because the parasite burden during chronic infections is extremely low. Here, we describe an integrated approach involving comprehensive tissue processing, ex vivo imaging, and confocal microscopy, which allowed us to visualize infected host cells in murine tissue with exquisite sensitivity. Using bioluminescence-guided tissue sampling, with a detection level of <20 parasites, we showed that in the colon, smooth muscle myocytes in the circular muscle layer are the most common infected host cell type. Typically, during chronic infections, the entire colon of a mouse contains only a few hundred parasites, often concentrated in a small number of cells each containing >200 parasites, which we term mega-nests. In contrast, during the acute stage, when the total parasite burden is considerably higher and many cells are infected, nests containing >50 parasites are rarely found. In C3H/HeN mice, but not BALB/c mice, we identified skeletal muscle as a major site of persistence during the chronic stage, with most parasites being found in large mega-nests within the muscle fibers. Finally, we report that parasites are also frequently found in the skin during chronic murine infections, often in multiple infection foci. In addition to being a site of parasite persistence, this anatomical reservoir could play an important role in insect-mediated transmission and have implications for drug development.IMPORTANCETrypanosoma cruzi causes Chagas disease, the most important parasitic infection in Latin America. Major pathologies include severe damage to the heart and digestive tract, although symptoms do not usually appear until decades after infection. Research has been hampered by the complex nature of the disease and technical difficulties in locating the extremely low number of parasites. Here, using highly sensitive imaging technology, we reveal the sites of parasite persistence during chronic-stage infections of experimental mice at single-cell resolution. We show that parasites are frequently located in smooth muscle cells in the circular muscle layer of the colon and that skeletal muscle cells and the skin can also be important reservoirs. This information provides a framework for investigating how the parasite is able to survive as a lifelong infection, despite a vigorous immune response. It also informs drug development strategies by identifying tissue sites that must be accessed to achieve a curative outcome.


Subject(s)
Muscle, Skeletal/parasitology , Single-Cell Analysis/methods , Trypanosoma cruzi/physiology , Animals , Chagas Disease/parasitology , Disease Reservoirs/parasitology , Female , Luminescent Measurements , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Muscle, Skeletal/pathology
7.
Methods Mol Biol ; 1955: 147-163, 2019.
Article in English | MEDLINE | ID: mdl-30868525

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease, the most important parasitic infection in Latin America. Despite a global research effort, there have been no significant treatment advances for at least 40 years. Gaps in our knowledge of T. cruzi biology and pathogenesis have been major factors in limiting progress. In addition, the extremely low parasite burden during chronic infections has complicated the monitoring of both disease progression and drug efficacy, even in predictive animal models. To address these problems, we genetically modified T. cruzi to express a red-shifted luciferase. Mice infected with these highly bioluminescent parasites can be monitored by in vivo imaging, with exquisite sensitivity. However, a major drawback of bioluminescence imaging is that it does not allow visualization of host-parasite interactions at a cellular level. To facilitate this, we generated T. cruzi strains that express a chimeric protein that is both bioluminescent and fluorescent. Bioluminescence allows the tissue location of infection foci to be identified, and fluorescence can then be exploited to detect parasites in histological sections derived from excised tissue. In this article, we describe in detail the in vivo imaging and confocal microscopy protocols that we have developed for visualizing T. cruzi parasites expressing these dual-reporter fusion proteins. The approaches make it feasible to locate individual parasites within chronically infected murine tissues, to assess their replicative status, to resolve the nature of host cells, and to characterize their immunological context.


Subject(s)
Chagas Disease/pathology , Host-Parasite Interactions , Trypanosoma cruzi/physiology , Animals , Chagas Disease/diagnostic imaging , Chagas Disease/parasitology , Disease Models, Animal , Fluorescence , Humans , Luciferases/analysis , Luciferases/genetics , Luminescent Agents/analysis , Luminescent Agents/metabolism , Luminescent Measurements/methods , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Confocal/methods , Optical Imaging/methods , Trypanosoma cruzi/genetics , Trypanosoma cruzi/isolation & purification , Whole Body Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...