Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Heliyon ; 10(12): e32582, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948029

ABSTRACT

Background: For approximately 1.5 million healthcare practitioners working and registered within the United Kingdom there exists a mandatory requirement to undertake Continued Professional Development. Internationally, healthcare Continued Professional Development is fundamental for frontline staff to practice safely, effectively and maintain up to date skills combined with knowledge. A generally accepted purpose for these regulations is to help nurses and midwives maintain an updated skill set to care for patients safely and competently. This qualitative paper presents the findings from the first phase of, "Converting Willingness to Engagement" project conducting focus groups and interviews with stakeholder nurses in England, UK. This study used a phenomenological approach to draw on the lived experiences of the nurse participants who organise, manage and budget Continued Professional Development activities. Objectives: To explore ways to capture and retain nursing staff in postgraduate training and education to facilitate professional advancement, maintenance of registration and improve patient care. Design: Phase one involved a series of qualitative online (virtual) focus group discussions and interviews with stakeholder nurses who commission Continued Professional Development. Settings: A series of online (virtual) focus group discussions and interviews were then conducted between February and May 2021. Methods: A purposive sample was identified consisting of clinical service leads, advanced practitioners and matrons involved in workforce development as stakeholders. Results: Three key themes were identified; the role of the healthcare providers in staff development, staff support provision requirements, and the university's provision including Continued Professional Development. Conclusion: Partnership working allows academic partners in universities and healthcare institutions to support nurses in their endeavors to maintain their registrations, develop professionally through further education and Continued Professional Development.

2.
J Nutr Biochem ; : 109691, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879136

ABSTRACT

Maternal nutrition during pregnancy influences fetal development; however, the regulatory markers of fetal programming across different gestational phases remain underexplored in livestock models. Herein, we investigated the regulatory role of long non-coding RNAs (lncRNAs) on fetal liver gene expression, the impacts of maternal vitamin and mineral supplementation, and the rate of maternal body weight gain during the periconceptual period. To this end, crossbred Angus heifers (n = 31) were randomly assigned to a 2 × 2 factorial design to evaluate the main effects of the rate of weight gain (low gain [LG, avg. daily gain of 0.28 kg/day] vs. moderate gain [MG, avg. daily gain of 0.79 kg/day]) and vitamins and minerals supplementation (VTM vs. NoVTM). On day 83 ± 0.27 of gestation, fetuses were collected for morphometric measurements, and fetal liver was collected for transcriptomic and mineral analyses. The maternal diet significantly affected fetal liver development and mineral reserves. Using an RNA-Seq approach, we identified 320 unique differentially expressed genes (DEGs) across all six comparisons (FDR < 0.05). Furthermore, lncRNAs were predicted through the FEELnc pipeline, revealing 99 unique differentially expressed lncRNAs (DELs). The over-represented pathways and biological processes (BPs) were associated with energy metabolism, Wnt signaling, CoA carboxylase activity, and fatty acid metabolism. The DEL-regulated BPs were associated with metal ion transport, pyrimidine metabolism, and classical energy metabolism-related glycolytic, gluconeogenic, and TCA cycle pathways. Our findings suggest that lncRNAs regulate mineral homeostasis- and energy metabolism-related gene networks in the fetal liver in response to early maternal nutrition.

3.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38770669

ABSTRACT

The objective of this study was to determine the dose-dependent response of one-carbon metabolite (OCM: methionine, choline, folate, and vitamin B12) supplementation on heifer dry matter intake on fixed gain, organ mass, hematology, cytokine concentration, pancreatic and jejunal enzyme activity, and muscle hydrogen peroxide production. Angus heifers (n = 30; body weight [BW] = 392.6 ±â€…12.6 kg) were individually fed and assigned to one of five treatments: 0XNEG: total mixed ration (TMR) and saline injections at days 0 and 7 of the estrous cycle, 0XPOS: TMR, rumen-protected methionine (MET) fed at 0.08% of the diet dry matter, rumen-protected choline (CHOL) fed at 60 g/d, and saline injections at days 0 and 7, 0.5X: TMR, MET, CHOL, 5-mg B12, and 80-mg folate injections at days 0 and 7, 1X: TMR, MET CHOL, 10-mg vitamin B12, and 160-mg folate at days 0 and 7, and 2X: TMR, MET, CHOL, 20-mg vitamin B12, and 320-mg folate at days 0 and 7. All heifers were estrus synchronized but not bred, and blood samples were collected on days 0, 7, and at slaughter (day 14) during which tissues were collected. By design, heifer ADG did not differ (P = 0.96). Spleen weight and uterine weight were affected cubically (P = 0.03) decreasing from 0XPOS to 0.5X. Ovarian weight decreased linearly (P < 0.01) with increasing folate and B12 injection. Hemoglobin and hematocrit percentage were decreased (P < 0.01) in the 0.5X treatment compared with all other treatments. Plasma glucose, histotroph protein, and pancreatic α-amylase were decreased (P ≤ 0.04) in the 0.5X treatment. Heifers on the 2X treatment had greater pancreatic α-amylase compared with 0XNEG and 0.5X treatment. Interleukin-6 in plasma tended (P = 0.08) to be greater in the 0XPOS heifers compared with all other treatments. Lastly, 0XPOS-treated heifers had reduced (P ≤ 0.07) hydrogen peroxide production in muscle compared with 0XNEG heifers. These data imply that while certain doses of OCM do not improve whole animal physiology, OCM supplementation doses that disrupt one-carbon metabolism, such as that of the 0.5X treatment, can induce a negative systemic response that results in negative effects in both the dam and the conceptus during early gestation. Therefore, it is necessary to simultaneously establish an optimal OCM dose that increases circulating concentrations for use by the dam and the conceptus, while avoiding potential negative side effects of a disruptive OCM, to evaluate the long-term impacts of OCM supplementation of offspring programming.


The feeding of one-carbon metabolites (including methionine and B vitamins) has been shown to improve fetal growth and milk production in species such as mice, sheep, and dairy cattle. Extending this to beef cattle around the time of breeding is a growing area of research. Our group previously determined that one-carbon metabolite supplementation to beef heifers altered the abundance of circulating methionine-folate cycle intermediates in a dose-dependent manner. Therefore, we aimed to determine a whole-body response to one-carbon metabolite supplementation in heifers by measuring the effects on specific physiological systems as well as a total systemic response. We determined that treatments that negatively altered the methionine-folate cycle yielded a fundamental negative whole-body response to supplementation.


Subject(s)
Animal Feed , Choline , Diet , Dietary Supplements , Folic Acid , Methionine , Vitamin B 12 , Animals , Female , Cattle/physiology , Cattle/metabolism , Methionine/administration & dosage , Methionine/metabolism , Methionine/pharmacology , Diet/veterinary , Vitamin B 12/administration & dosage , Vitamin B 12/metabolism , Vitamin B 12/pharmacology , Folic Acid/administration & dosage , Folic Acid/metabolism , Animal Feed/analysis , Choline/administration & dosage , Choline/metabolism
4.
Pilot Feasibility Stud ; 10(1): 69, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693558

ABSTRACT

BACKGROUND: Developing evidence for the use of psychosocial interventions for people with dementia is a research priority. This pilot study aimed to provide variability estimates for a set of outcome measures that would inform the development of a more extensive controlled study. The larger study will seek to explore the effect of attending a lifelong learning intervention for people with dementia compared to receiving treatment as usual. This pilot and feasibility stage also analysed how data collectors and researchers evaluated the use of the outcome measures in a sample of people with mild to moderate dementia. METHODS: Before initiating the pilot study, a participant consultation was conducted with people with dementia, who attend a lifelong learning service known as a dementia school, and their teachers. From this consultation, the research outcomes identified were the mini-mental state examination (MMSE), Quality-of-Life Alzheimer's Disease (QoL-AD), General Self-Efficacy Scale (GSE), Rosenberg self-esteem scale, and the Friendship scale. The following study was divided into two steps. In step 1, participants were people with dementia attending a dementia school (intervention group) or usual services (control group). The participants were tested at baseline and at a 6-month follow-up. Data were collected between November 2018 and July 2019. In step 2, feasibility and acceptability issues with the recruitment of participants, data collection process, and outcome measures, identified in step 1, were evaluated through a data collector focus group. RESULTS: Fifty-five people with dementia were included in the analysis. Step 1 provided estimates of changes from baseline to follow-up, and ancillary standard deviations were supplied for all outcome measures. Step 2 provided reflections on the feasibility and acceptability of the intervention, data collection, and outcome measures. This included views on how people with dementia experience participating in a test situation. CONCLUSIONS: This study provided estimates of change and variability in the outcome measures. Additionally, issues regarding data collection were identified and should be addressed in future studies. The project demonstrated how to support people with dementia to participate in research that is meaningful to them. TRIAL REGISTRATION: According to national legislation, registration with a database of clinical studies was optional, as the study evaluated existing activities rather than a clinical intervention.

5.
Vet Sci ; 11(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38668414

ABSTRACT

To investigate the effects of nutrient restriction and one-carbon metabolite (OCM) supplementation (folate, vitamin B12, methionine, and choline) on fetal small intestine weight, vascularity, and cell proliferation, 29 (n = 7 ± 1 per treatment) crossbred Angus beef heifers (436 ± 42 kg) were estrous synchronized and conceived by artificial insemination with female sexed semen from a single sire. Then, they were allotted randomly to one of four treatments in a 2 × 2 factorial arrangement with the main factors of nutritional plane [control (CON) vs. restricted feed intake (RES)] and OCM supplementation [without OCM (-OCM) or with OCM (+OCM)]. Heifers receiving the CON level of intake were fed to target an average daily gain of 0.45 kg/day, which would allow them to reach 80% of mature BW by calving. Heifers receiving the RES level of intake were fed to lose 0.23 kg/heifer daily, which mimics observed production responses in heifers that experience a diet and environment change during early gestation. Targeted heifer gain and OCM treatments were administered from d 0 to 63 of gestation, and then all heifers were fed a common diet targeting 0.45 kg/d gain until d 161 of gestation, when heifers were slaughtered, and fetal jejunum was collected. Gain had no effect (p = 0.17) on the fetal small intestinal weight. However, OCM treatments (p = 0.02) displayed less weight compared to the -OCM groups. Capillary area density was increased in fetal jejunal villi of RES - OCM (p = 0.02). Vascular endothelial growth factor receptor 2 (VEGFR2) positivity ratio tended to be greater (p = 0.08) in villi and was less in the crypts (p = 0.02) of the RES + OCM group. Cell proliferation decreased (p = 0.02) in villi and crypts of fetal jejunal tissue from heifers fed the RES + OCM treatment compared with all groups and CON - OCM, respectively. Spatial cell density increased in RES - OCM compared with CON + OCM (p = 0.05). Combined, these data show OCM supplementation can increase expression of VEGFR2 in jejunal villi, which will promote maintenance of the microvascular beds, while at the same time decreasing small intestine weight and crypt cell proliferation.

7.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38407272

ABSTRACT

We hypothesized that restricted maternal nutrition and supplementation of one-carbon metabolites (OCM; methionine, folate, choline, and vitamin B12) would affect placental vascular development during early pregnancy. A total of 43 cows were bred, and 32 heifers successfully became pregnant with female calves, leading to the formation of four treatment groups: CON - OCM (n = 8), CON + OCM (n = 7), RES - OCM (n = 9), and RES + OCM (n = 8). The experimental design was a 2 × 2 factorial, with main factors of dietary intake affecting average daily gain: control (CON; 0.6 kg/d ADG) and restricted (RES; -0.23 kg/d ADG); and OCM supplementation (+OCM) in which the heifers were supplemented with rumen-protected methionine (7.4 g/d) and choline (44.4 g/d) and received weekly injections of 320 mg of folate and 20 mg of vitamin B12, or received no supplementation (-OCM; corn carrier and saline injections). Heifers were individually fed and randomly assigned to treatment at breeding (day 0). Placentomes were collected on day 63 of gestation (0.225 of gestation). Fluorescent staining with CD31 and CD34 combined with image analysis was used to determine the vascularity of the placenta. Images were analyzed for capillary area density (CAD) and capillary number density (CND). Areas evaluated included fetal placental cotyledon (COT), maternal placental caruncle (CAR), whole placentome (CAR + COT), intercotyledonary fetal membranes (ICOT, or chorioallantois), intercaruncular endometrium (ICAR), and endometrial glands (EG). Data were analyzed with the GLM procedure of SAS, with heifer as the experimental unit and significance at P ≤ 0.05 and a tendency at P > 0.05 and P < 0.10. Though no gain × OCM interactions existed (P ≥ 0.10), OCM supplementation increased (P = 0.01) CAD of EG, whereas nutrient restriction tended (P < 0.10) to increase CAD of ICOT and CND of COT. Additionally, there was a gain × OCM interaction (P < 0.05) for CAD within the placentome and ICAR, such that RES reduced and supplementation of RES with OCM restored CAD. These results indicate that maternal rate of gain and OCM supplementation affected placental vascularization (capillary area and number density), which could affect placental function and thus the efficiency of nutrient transfer to the fetus during early gestation.


In cow­calf production, periods of poor forage availability or quality can result in nutrient restriction during pregnancy. Previous studies have shown that even moderate maternal feed restriction during pregnancy, including very early in pregnancy, has profound effects on fetal and placental development, potentially having lasting impacts on calf growth and body composition later in life. One-carbon metabolites (OCM) in the diet are biomolecules required for methylation reactions and participate in the regulation of gene expression. Our objective was to evaluate the effects of nutrient restriction and OCM supplementation (specifically methionine, choline, folate, and vitamin B12) on placental vascular development during early pregnancy. Proper placental vascular development is necessary for healthy pregnancy outcomes, reflected by normal birth weight and healthy offspring. Our results indicated that maternal rate of gain and OCM supplementation affect placental vascularization, which could affect placental function and thereby fetal development throughout gestation. In the context of beef cattle production, our study sheds light on strategies that could enhance placental vascular development during early pregnancy. However, it is essential to recognize the nuances in our data, highlighting the need for further research to fully comprehend these intricate processes.


Subject(s)
Iron-Dextran Complex , Placenta , Female , Pregnancy , Animals , Cattle , Plant Breeding , Methionine/pharmacology , Racemethionine , Carbon , Choline/pharmacology , Dietary Supplements , Folic Acid/pharmacology , Vitamin B 12/pharmacology , Diet/veterinary
8.
Aging Ment Health ; 28(2): 294-301, 2024.
Article in English | MEDLINE | ID: mdl-37885301

ABSTRACT

OBJECTIVES: This paper explores the process of gaining consent from the perspectives of people living with dementia, their relatives/carers, and service providers. This is developed based on new primary qualitative research and addresses a gap in critical reflection on the practice and ethical process of research consent. METHODS: A qualitative approach was used to conduct this research through the implementation of four focus groups run with people living with dementia (n = 12), two focus groups with family members (n = 6), two focus groups with service staff (n = 5). RESULTS: Data was analysed thematically, to identify two core themes: consent as a journey and the flexible consent approach. These identified concerns with autonomy, decision making and placing people living with dementia at the centre of the consent process. The journey of consent emerged as central to supporting participation and enhancing the consent process. CONCLUSION: The paper presents new evidence about the lived experience of research consent in the field of dementia, presenting the process of collecting consent in research as a flexible process that is best supported through a growing knowledge of participants and participation sites.


Subject(s)
Dementia , Humans , Dementia/therapy , Caregivers , Qualitative Research , Focus Groups , Informed Consent
9.
Animals (Basel) ; 13(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958127

ABSTRACT

ß-Defensins are cationic antimicrobial peptides (AMPs) that play an important role in the innate immune defense of bovines. They are constitutively expressed in mammary glands and induced differently in response to pathogens. Their expression is influenced by various factors, including hormones, plant-derived compounds, and dietary energy imbalance. The toll-like receptors (TLRs)/nuclear factor-kappa B (NF-κB) pathway plays a crucial role in ß-defensin induction, while alternative pathways such as mitogen-activated protein kinase (MAPK) and epigenetic regulation also make substantial contributions. ß-Defensins exhibit bactericidal activity against a wide range of pathogens, including two major mastitis pathogens, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), primarily through membrane disruption. ß-Defensins have low cytotoxicity to host cells and demonstrate immunomodulatory properties, and pathogens also display minimal resistance to these AMPs. Given the increasing concern in antimicrobial resistance, the potential of ß-defensins as natural antimicrobials has garnered considerable attention. This article provides an overview of the characteristics of bovine ß-defensins, their expression pathways, their mode of action, and factors influencing their expression in the mammary glands of cattle. Additionally, it identifies the current gaps in research within this field and suggests areas that require further investigation. Understanding the regulation and function of ß-defensins offers valuable insights to develop effective strategies for strengthening the immune system of mammary glands, reducing the reliance on synthetic antimicrobials, and explore novel natural antimicrobial alternatives.

10.
Microbiol Spectr ; 11(6): e0273223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37921486

ABSTRACT

IMPORTANCE: Emerging evidence suggests that microbiome-targeted approaches may provide a novel opportunity to reduce the incidence of reproductive failures in cattle. To develop such microbiome-based strategies, one of the first logical steps is to identify reproductive microbiome features related to fertility and to isolate the fertility-associated microbial species for developing a future bacterial consortium that could be administered before breeding to enhance pregnancy outcomes. Here, we characterized the vaginal and uterine microbiota in beef cattle that became pregnant or remained open via artificial insemination and identified microbiota features associated with fertility. We compared similarities between vaginal and uterine microbiota and between heifers and cows. Using culturing, we provided new insights into the culturable fraction of the vaginal and uterine microbiota and their antimicrobial resistance. Overall, our findings will serve as an important basis for future research aimed at harnessing the vaginal and uterine microbiome for improved cattle fertility.


Subject(s)
Microbiota , Reproduction , Pregnancy , Cattle , Animals , Female , Vagina/microbiology , Insemination, Artificial/veterinary , Fertility
11.
Front Cardiovasc Med ; 10: 1103760, 2023.
Article in English | MEDLINE | ID: mdl-37283574

ABSTRACT

Background: The advent of transcatheter aortic valve replacement (TAVR) has directly impacted the lifelong management of patients with aortic valve disease. The U.S. Food and Drug Administration has approved TAVR for all surgical risk: prohibitive (2011), high (2012), intermediate (2016), and low (2019). Since then, TAVR volumes are increasing and surgical aortic valve replacements (SAVR) are decreasing. This study sought to evaluate trends in isolated SAVR in the pre- and post-TAVR eras. Methods: From January 2000 to June 2020, 3,861 isolated SAVRs were performed at a single academic quaternary care institution which participated in the early trials of TAVR beginning in 2007. A formal structural heart center was established in 2012 when TAVR became commercially available. Patients were divided into the pre-TAVR era (2000-2011, n = 2,426) and post-TAVR era (2012-2020, n = 1,435). Data from the institutional Society of Thoracic Surgeons National Database was analyzed. Results: The median age was 66 years, similar between groups. The post-TAVR group had a statistically higher rate of diabetes, hypertension, dyslipidemia, heart failure, more reoperative SAVR, and lower STS Predicted Risk of Mortality (PROM) (2.0% vs. 2.5%, p < 0.0001). There were more urgent/emergent/salvage SAVRs (38% vs. 24%) and fewer elective SAVRs (63% vs. 76%), (p < 0.0001) in the post-TAVR group. More bioprosthetic valves were implanted in the post-TAVR group (85% vs. 74%, p < 0.0001). Larger aortic valves were implanted (25 vs. 23 mm, p < 0.0001) and more annular enlargements were performed (5.9% vs. 1.6%, p < 0.0001) in the post-TAVR era. Postoperatively, the post-TAVR group had less blood product transfusion (49% vs. 58%, p < 0.0001), renal failure (1.4% vs. 4.3%, p < 0.0001), pneumonia (2.3% vs. 3.8%, p = 0.01), shorter lengths of stay, and lower in-hospital mortality (1.5% vs. 3.3%, p = 0.0007). Conclusion: The approval of TAVR changed the landscape of aortic valve disease management. At a quaternary academic cardiac surgery center with a well-established structural heart program, patients undergoing isolated SAVR in the post-TAVR era had lower STS PROM, more implantation of bioprosthetic valves, utilization of larger valves, annular enlargement, and lower in-hospital mortality. Isolated SAVR continues to be performed in the TAVR era with excellent outcomes. SAVR remains an essential tool in the lifetime management of aortic valve disease.

12.
Clin Immunol ; 253: 109677, 2023 08.
Article in English | MEDLINE | ID: mdl-37315681

ABSTRACT

Eblasakimab is a first-in-class monoclonal antibody under investigation for the treatment of atopic dermatitis (AD), which targets IL-13Rα1, a subunit of the Type 2 receptor complex. IL-13Rα1 stimulates phosphorylation of signal transducer and activator of transcription 6 (STAT6) to drive inflammation. This brief report investigates the mechanistic basis of eblasakimab and its effects on IL-13Rα1 signaling as part of a phase 1a, open-label, single ascending dose study. Single ascending doses of eblasakimab were administered by intravenous or subcutaneous injection to healthy male volunteers. The impact of eblasakimab on IL-13Rα1 receptor occupancy and STAT6 phosphorylation was assessed in participant blood monocytes. No serious treatment emergent adverse events were reported. Eblasakimab effectively blocked the IL-13Rα1 receptor and inhibited STAT6 phosphorylation with single doses of 3 mg/kg intravenously and 300 mg subcutaneously. Results support further clinical development of eblasakimab as a novel biologic for AD, with potential for 2- to 4-week dosing regimens.


Subject(s)
Antibodies, Monoclonal , Interleukin-13 , Humans , Male , Receptors, Interleukin-13 , Phosphorylation , STAT6 Transcription Factor , Interleukin-13 Receptor alpha1 Subunit/metabolism , Healthy Volunteers
13.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37129588

ABSTRACT

Adequate maternal nutrition is key for proper fetal development and epigenetic programming. One-carbon metabolites (OCM), including vitamin B12, folate, choline, and methionine, play a role in epigenetic mechanisms associated with developmental programming. This study investigated the presence of B12 and folate in maternal serum, allantoic fluid (ALF), and amniotic fluid (AMF), as well as how those concentrations in all three fluids correlate to the concentrations of methionine-folate cycle intermediates in heifers receiving either a control (CON) or restricted (RES) diet for the first 50 d of gestation and fetal hepatic gene expression for methionine-folate cycle enzymes. Angus cross heifers (n = 43) were estrus synchronized, bred via artificial insemination with semen from a single sire, and randomly assigned to one of two nutrition treatments (CON = 20, RES = 23). Heifers were ovariohysterectomized on either day 16 (n = 14), 34 (n = 15), or 50 of gestation (n = 14), where samples of maternal serum (n = 42), ALF (n = 29), and AMF (n = 11) were collected and analyzed for concentrations of folate and B12. Concentrations of B12 and folate in ALF were greater (P < 0.05) in RES compared to CON. For ALF, folate concentrations were also greater (P < 0.01) on day 34 compared to day 50. There was a significant (P = 0.04) nutrition × fluid interaction for B12 concentrations where concentrations were greatest in restricted ALF, intermediate in control ALF, and lowest in CON and RES serum and AMF. Folate concentrations were greatest (P < 0.01) in ALF, intermediate in serum, and lowest in AMF. Additionally, positive correlations (P < 0.05) were found between ALF and AMF folate concentrations and AMF concentrations of methionine, serine, and glycine. Negative correlations (P < 0.05) between AMF folate and serum homocysteine were also observed. Both positive and negative correlations (P < 0.05) depending on the fluid evaluated were found between B12 and methionine, serine, and glycine concentrations. There was a downregulation (P = 0.05) of dihydrofolate reductase and upregulation (P = 0.03) of arginine methyltransferase 7 gene expression in RES fetal liver samples compared with CON fetal liver on day 50. Combined, these data show restricted maternal nutrition results in increased B12 and folate concentrations present in fetal fluids, and increased expression of genes for enzymes within one-carbon metabolism.


When pregnant cattle have restricted access to feed or specific nutrients, calf development can be affected, and the degree of impairment depends, at least partially, on timing, duration, and severity of the limitations. A biochemical pathway present in cells that can be affected by limited nutrition is one-carbon metabolism. This pathway is related to epigenetics, which regulates gene expression or the turning on and off of genes. Two important vitamins in one-carbon metabolism are vitamins B12 and folate. By understanding the amounts of those vitamins available to the developing calf, we can gain better insight into the regulation and potential avenues of improvement of calf growth and development. In this study, we found a nutrient restricted maternal diet increased the amount of B12 and folate in calf allantoic and amniotic fluids. We also found that folate and B12 were correlated to the presence of other nutrients in serum, allantoic fluid, and amniotic fluid. In addition, we found that a protein methylating gene in one-carbon metabolism had increased expression in calves from heifers receiving limited nutrition. This study is an important step in understanding how the nutrients available to a pregnant heifer during gestation affects nutrients available to the conceptus.


Subject(s)
Folic Acid , Methionine , Pregnancy , Animals , Cattle , Female , Vitamin B 12 , Diet/veterinary , Racemethionine , Liver/metabolism , Glycine , Serine , Carbon/metabolism
14.
Metabolites ; 13(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37233634

ABSTRACT

Maternal mineral nutrition during the critical phases of fetal development may leave lifetime impacts on the productivity of an individual. Most research within the developmental origins of the health and disease (DOHaD) field is focused on the role of macronutrients in the genome function and programming of the developing fetus. On the other hand, there is a paucity of knowledge about the role of micronutrients and, specifically, minerals in regulating the epigenome of livestock species, especially cattle. Therefore, this review will address the effects of the maternal dietary mineral supply on the fetal developmental programming from the embryonic to the postnatal phases in cattle. To this end, we will draw a parallel between findings from our cattle model research with data from model animals, cell lines, and other livestock species. The coordinated role and function of different mineral elements in feto-maternal genomic regulation underlies the establishment of pregnancy and organogenesis and, ultimately, affects the development and functioning of metabolically important tissues, such as the fetal liver, skeletal muscle, and, importantly, the placenta. Through this review, we will delineate the key regulatory pathways involved in fetal programming based on the dietary maternal mineral supply and its crosstalk with epigenomic regulation in cattle.

15.
Data Brief ; 48: 109173, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37180878

ABSTRACT

Herein, we present a dataset based on the RNA-Seq analysis of liver tissue from bovine female fetuses at day 83 of gestation. The findings were reported in the main article, "Periconceptual maternal nutrition affects fetal liver programming of energy- and lipid-related genes" [1]. These data were generated to investigate the effects of periconceptual maternal vitamin and mineral supplementation and rates of body weight gain on the transcript abundance of genes associated with fetal hepatic metabolism and function. To this end, crossbred Angus beef heifers (n = 35) were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial design. The main effects tested were vitamin and mineral supplementation (VTM or NoVTM - at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG - 0.28 kg/d) or moderate (MG - 0.79 kg/d) - from breeding to day 83). The fetal liver was collected on day 83 ± 0.27 of gestation. After total RNA isolation and quality control, strand-specific RNA libraries were prepared and sequenced on the Illumina® NovaSeq 6000 platform to generate paired-end 150-bp reads. After read mapping and counting, differential expression analysis was performed with edgeR. We identified 591 unique differentially expressed genes across all six vitamin-gain contrasts (FDR ≤ 0.1). To our knowledge, this is the first dataset investigating the fetal liver transcriptome in response to periconceptual maternal vitamin and mineral supplementation and/or the rate of weight gain. The data described in this article provides genes and molecular pathways differentially programming liver development and function.

16.
Animals (Basel) ; 13(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36830387

ABSTRACT

During pregnancy, the fetus relies on the dam for its nutrient supply. Nutritional stimuli during fetal organ development can program hepatic metabolism and function. Herein, we investigated the role of vitamin and mineral supplementation (VTM or NoVTM-at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG) or moderate (MG)-from breeding to day 83) on the fetal liver transcriptome and the underlying biological pathways. Crossbred Angus beef heifers (n = 35) were randomly assigned to one of four treatments in a 2 × 2 factorial design (VTM_LG, VTM_MG, NoVTM_LG, and NoVTM_MG). Gene expression was measured with RNA-Seq in fetal livers collected on day 83 ± 0.27 of gestation. Our results show that vitamin and mineral supplementation and rate of weight gain led to the differential expression of hepatic genes in all treatments. We identified 591 unique differentially expressed genes across all six VTM-gain contrasts (FDR ≤ 0.1). Over-represented pathways were related to energy metabolism, including PPAR and PI3K-Akt signaling pathways, as well as lipid metabolism, mineral transport, and amino acid transport. Our findings suggest that periconceptual maternal nutrition affects fetal hepatic function through altered expression of energy- and lipid-related genes.

17.
Metabolites ; 13(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36837794

ABSTRACT

Herein, we evaluated the hepatic lipid metabolic profiles of bovine fetuses in response to maternal vitamin and mineral supplementation (VMSUP; supplemented (VTM) or not (NoVTM)) and two different rates of gain (GAIN; low gain (LG), 0.28 kg/d, or moderate gain (MG), 0.79 kg/d). Crossbred Angus heifers (n = 35; initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial arrangement, resulting in the following treatment combinations: NoVTM-LG (n = 9), NoVTM-MG (n = 9), VTM-LG (n = 9), and VTM-MG (n = 8). Heifers received their treatments until d 83 of gestation, when they were ovariohysterectomized. Fetuses were harvested and liver samples were analyzed via ultrahigh-performance liquid chromatography-tandem mass spectroscopy to characterize lipid profiles and abundances. We identified 374 biochemicals/metabolites belonging to 57 sub-pathways of the lipid metabolism super-pathway. The majority of the biochemicals/metabolites (n = 152) were significantly affected by the main effect of GAIN. Maternal moderate rates of gain resulted in greater abundances (p ≤ 0.0001) of ω-3 fatty acids (eicosapentaenoate, docosapentaenoate, and docosahexaenoate) and lower abundances (p ≤ 0.0001) of ω-6 fatty acids. Further, MG resulted in the accumulation of several diacylglycerols and depletion of the majority of the monoacylglycerols. Concentrations of nearly all acylcarnitines (p ≤ 0.03) were decreased in VTM-LG fetal livers compared to all other treatment combinations, indicating a greater rate of complete oxidation of fatty acids. Levels of secondary bile acids were impacted by VMSUP, being greater (p ≤ 0.0048) in NoVTM than in VTM fetal livers. Moreover, NoVTM combined with lower rate of gain resulted in greater concentrations of most secondary bile acid biochemicals/metabolites. These data indicate that maternal diet influenced and altered fetal hepatic lipid composition in the first trimester of gestation. Maternal body weight gain exerted a greater influence on fetal lipid profiles than vitamin and mineral supplementation. Specifically, lower rate of gain (0.28 kg/d) resulted in an increased abundance of the majority of the biochemicals/metabolites identified in this study.

18.
Health Expect ; 26(2): 931-939, 2023 04.
Article in English | MEDLINE | ID: mdl-36722316

ABSTRACT

BACKGROUND: Analysis of video data was conducted of validated assessments with people with dementia as part of a feasibility control study comparing a lifelong learning service with other dementia services. OBJECTIVE: The aim was to provide a new perspective on what occurs during the assessment process when using validated measures in research and explore which strategies people with dementia use to manage their participation. DESIGN: Video recordings were made of pre- and postintervention assessments of people with dementia. An initial pilot analysis of 10 videos of the pre-assessments was conducted. SETTING: Lifelong learning services and other dementia services situated in six municipalities in Northern Denmark took part in this study, with 55 people with dementia participating. RESULTS: The themes identified were: 'State of mind' and 'Mental resources', showing how these aspects influenced the participants' reactions and the strategies they used. DISCUSSION: The results are discussed in relation to how individual personality traits influence the assessment process and the way a person with dementia will manage the situation. CONCLUSION: The assessment situation is complex and can be influenced by the strategies adopted by individuals with dementia as they try to manage the assessment process. PATIENT OR PUBLIC CONTRIBUTION: People with dementia supported the decision-making for the choice of validated measure used within this study.


Subject(s)
Dementia , Patient Education as Topic , Humans , Feasibility Studies , Qualitative Research , Validation Studies as Topic , Pilot Projects , Denmark , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...