Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Radioanal Nucl Chem ; 333(4): 2115-2120, 2024.
Article in English | MEDLINE | ID: mdl-38737916

ABSTRACT

Liquid Scintillation Counting (LSC) gross alpha/beta screening is a valuable tool for providing rapid laboratory response for the analysis of human clinical urine samples during a large-scale radiation incident event. Verification of method performance, as required for clinical laboratory testing, is accomplished by the evaluation of routine, periodic measurements of radioactive spiked samples for quality control, performance testing, and accuracy checks. Radionuclide stability of alpha and beta emitters in urine for LSC analysis is an important consideration. The purpose of this work is to demonstrate optimal preparations and storage conditions of samples used for method verification.

2.
Am Heart J ; 273: 72-82, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621575

ABSTRACT

BACKGROUND: The reduction in cardiovascular disease (CVD) events with edetate disodium (EDTA) in the Trial to Assess Chelation Therapy (TACT) suggested that chelation of toxic metals might provide novel opportunities to reduce CVD in patients with diabetes. Lead and cadmium are vasculotoxic metals chelated by EDTA. We present baseline characteristics for participants in TACT2, a randomized, double-masked, placebo-controlled trial designed as a replication of the TACT trial limited to patients with diabetes. METHODS: TACT2 enrolled 1,000 participants with diabetes and prior myocardial infarction, age 50 years or older between September 2016 and December 2020. Among 959 participants with at least one infusion, 933 had blood and/or urine metals measured at the Centers for Diseases Control and Prevention using the same methodology as in the National Health and Nutrition Examination Survey (NHANES). We compared metal levels in TACT2 to a contemporaneous subset of NHANES participants with CVD, diabetes and other inclusion criteria similar to TACT2's participants. RESULTS: At baseline, the median (interquartile range, IQR) age was 67 (60, 72) years, 27% were women, 78% reported white race, mean (SD) BMI was 32.7 (6.6) kg/m2, 4% reported type 1 diabetes, 46.8% were treated with insulin, 22.3% with GLP1-receptor agonists or SGLT-2 inhibitors, 90.2% with aspirin, warfarin or P2Y12 inhibitors, and 86.5% with statins. Blood lead was detectable in all participants; median (IQR) was 9.19 (6.30, 13.9) µg/L. Blood and urine cadmium were detectable in 97% and median (IQR) levels were 0.28 (0.18, 0.43) µg/L and 0.30 (0.18, 0.51) µg/g creatinine, respectively. Metal levels were largely similar to those in the contemporaneous NHANES subset. CONCLUSIONS: TACT2 participants were characterized by high use of medication to treat CVD and diabetes and similar baseline metal levels as in the general US population. TACT2 will determine whether chelation therapy reduces the occurrence of subsequent CVD events in this high-risk population. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov. Identifier: NCT02733185. https://clinicaltrials.gov/study/NCT02733185.


Subject(s)
Chelation Therapy , Humans , Female , Male , Middle Aged , Aged , Chelation Therapy/methods , Double-Blind Method , Edetic Acid/therapeutic use , Lead/blood , Lead/urine , Cadmium/urine , Cadmium/blood , Chelating Agents/therapeutic use , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/blood
3.
Nicotine Tob Res ; 23(5): 790-797, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33590857

ABSTRACT

INTRODUCTION: Concurrent use of tobacco cigarettes and e-cigarettes ("dual use") is common among tobacco users. Little is known about differences in demographics and toxicant exposure among subsets of dual users. AIMS AND METHODS: We analyzed data from adult dual users (current every/some day users of tobacco cigarettes and e-cigarettes, n = 792) included in the PATH Study Wave 1 (2013-2014) and provided urine samples. Samples were analyzed for biomarkers of exposure to nicotine and selected toxicants (tobacco-specific nitrosamine NNK [NNAL], lead, cadmium, naphthalene [2-naphthol], pyrene [1-hydroxypyrene], acrylonitrile [CYMA], acrolein [CEMA], and acrylamide [AAMA]). Subsets of dual users were compared on demographic, behavioral, and biomarker measures to exclusive cigarette smokers (n = 2411) and exclusive e-cigarette users (n = 247). RESULTS: Most dual users were predominant cigarette smokers (70%), followed by daily dual users (13%), non-daily concurrent dual users (10%), and predominant vapers (7%). Dual users who smoked daily showed significantly higher biomarker concentrations compared with those who did not smoke daily. Patterns of e-cigarette use had little effect on toxicant exposure. Dual users with high toxicant exposure were generally older, female, and smoked more cigarettes per day. Dual users who had low levels of biomarkers of exposure were generally younger, male, and smoked non-daily. CONCLUSIONS: In 2013-2014, most dual users smoked cigarettes daily and used e-cigarettes occasionally. Cigarette smoking appears to be the primary driver of toxicant exposure among dual users, with little-to-no effect of e-cigarette use on biomarker levels. Results reinforce the need for dual users to stop smoking tobacco cigarettes to reduce toxicant exposure. IMPLICATIONS: With considerable dual use of tobacco cigarettes and e-cigarettes in the United States, it is important to understand differences in toxicant exposure among subsets of dual users, and how these differences align with user demographics. Findings suggest most dual users smoke daily and use e-cigarettes intermittently. Low exposure to toxicants was most common among younger users, males, and intermittent smokers; high exposure to toxicants was most common among older users, females, and heavier cigarette smokers. Results underscore the heterogeneity occurring within dual users, and the need to quit smoking cigarettes completely in order to reduce toxicant exposure.


Subject(s)
Cigarette Smoking/urine , Electronic Nicotine Delivery Systems , Health Behavior , Nicotine/urine , Tobacco Products/adverse effects , Vaping/urine , Adult , Biomarkers/urine , Cigarette Smoking/adverse effects , Cigarette Smoking/epidemiology , Female , Humans , Male , Metals, Heavy/urine , Middle Aged , Nitrosamines/urine , Polycyclic Aromatic Hydrocarbons/urine , Pyrenes/urine , Smokers , Nicotiana , United States , Vaping/epidemiology
4.
J Anal Toxicol ; 45(3): 297-307, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-32514534

ABSTRACT

A number of errors with potentially significant consequences may be introduced at various points in the analytical process, which result in skewed, erroneous analytical results. Precautionary procedures such as contamination control, following established sample collection protocols, and having a complete understanding of the long-term stability of the elements of interest can minimize or eliminate these errors. Contamination control is critical in the quantification of Cr and Co in human whole blood. Cr and Co levels in most biological samples are low, but these elements occur naturally in the environment and are often found in commercial and consumer products, which increases the risk of contamination. In this paper, we demonstrated that lot screening process in which we pre-screen a sub-set of manufactured lots used in collecting, analyzing and storing blood samples is a critical step in controlling Cr and Co contamination. Stainless steel needles are often utilized in blood collection but are considered as a potential source of introducing metal contamination to the patient sample. We conducted two studies to determine if there is a possibility of Cr or Co leaching into the human whole blood from the needles during blood collection. We analyzed blood collected from 100 donors and blood collected in vitro in the laboratory from designated vessel containing spiked blood with higher levels of Cr and Co. Two blood tubes were consecutively collected through one needle. In both studies, Cr and Co concentration levels in the two consecutively collected tubes were compared. Based on the results from donor and in vitro blood collection studies, we concluded that there was no Cr and Co leaching from the limited sets of stainless steel needles used in these studies. Furthermore, we demonstrated that Cr and Co human whole blood samples are stable for 1 year stored at temperatures of -70, -20 and 4°C and 6 months at room temperature.


Subject(s)
Metals , Specimen Handling , Blood Specimen Collection , Humans
5.
Cancer Epidemiol Biomarkers Prev ; 29(3): 659-667, 2020 03.
Article in English | MEDLINE | ID: mdl-31988072

ABSTRACT

BACKGROUND: Monitoring population-level toxicant exposures from smokeless tobacco (SLT) use is important for assessing population health risks due to product use. In this study, we assessed tobacco biomarkers of exposure (BOE) among SLT users from the Wave 1 (2013-2014) of the Population Assessment of Tobacco and Health (PATH) Study. METHODS: Urinary biospecimens were collected from adults ages 18 and older. Biomarkers of nicotine, tobacco-specific nitrosamines (TSNA), polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), metals, and inorganic arsenic were analyzed and reported among exclusive current established SLT users in comparison with exclusive current established cigarette smokers, dual SLT and cigarette users, and never tobacco users. RESULTS: In general, SLT users (n = 448) have significantly higher concentrations of BOE to nicotine, TSNAs, and PAHs compared with never tobacco users; significant dose-response relationships between frequency of SLT use and biomarker concentrations were also reported among exclusive SLT daily users. Exclusive SLT daily users have higher geometric mean concentrations of total nicotine equivalent-2 (TNE2) and TSNAs than exclusive cigarette daily smokers. In contrast, geometric mean concentrations of PAHs and VOCs were substantially lower among exclusive SLT daily users than exclusive cigarette daily smokers. CONCLUSIONS: Our study produced a comprehensive assessment of SLT product use and 52 biomarkers of tobacco exposure. Compared with cigarette smokers, SLT users experience greater concentrations of some tobacco toxicants, including nicotine and TSNAs. IMPACT: Our data add information on the risk assessment of exposure to SLT-related toxicants. High levels of harmful constituents in SLT remain a health concern.


Subject(s)
Tobacco Use/adverse effects , Tobacco, Smokeless/toxicity , Adolescent , Adult , Biomarkers/urine , Carcinogens/analysis , Carcinogens/toxicity , Female , Humans , Longitudinal Studies , Male , Middle Aged , Nicotine/toxicity , Nicotine/urine , Nitrosamines , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/urine , Prevalence , Smokers/statistics & numerical data , Tobacco Use/epidemiology , Tobacco Use/urine , United States/epidemiology , Volatile Organic Compounds/toxicity , Volatile Organic Compounds/urine , Young Adult
7.
At Spectrosc ; 39(6): 219-228, 2018 Dec.
Article in English | MEDLINE | ID: mdl-32336846

ABSTRACT

The Centers for Disease Control and Prevention's (CDC) Environmental Health Laboratory uses modified versions of inductively coupled plasma mass spectrometry (ICP-MS) analytical methods to quantify metals contamination present in items that will come into contact with patient samples during the pre-analytical, analytical, and post-analytical stages. This lot screening process allows us to reduce the likelihood of introducing contamination which can lead to falsely elevated results. This is particularly important when looking at biomonitoring levels in humans which tend to be near the limit of detection of many methods. The fundamental requirements for a lot screening program in terms of facilities and processes are presented along with a discussion of sample preparation techniques used for lot screening. The criteria used to evaluate the lot screening data to determine the acceptability of a particular manufacturing lot is presented as well. As a result of lot testing, unsuitable manufactured lots are identified and excluded from use.

8.
Anal Methods ; 9(23): 3464-3476, 2017.
Article in English | MEDLINE | ID: mdl-29201158

ABSTRACT

The Centers for Disease Control and Prevention developed a biomonitoring method to rapidly and accurately quantify chromium and cobalt in human whole blood by ICP-MS. Many metal-on-metal hip implants which contain significant amounts of chromium and cobalt are susceptible to metal degradation. This method is used to gather population data about chromium and cobalt exposure of the U.S. population that does not include people that have metal-on-metal hip implants so that reference value can be established for a baseline level in blood. We evaluated parameters such as; helium gas flow rate, choice and composition of the diluent solution for sample preparation, and sample rinse time to determine the optimal conditions for analysis. The limits of detection for chromium and cobalt in blood were determined to be 0.41 and 0.06 µg/L, respectively. Method precision, accuracy, and recovery for this method were determined using quality control material created in-house and historical proficiency testing samples. We conducted experiments to determine if quantitative changes in the method parameters affect the results obtained by changing four parameters while analyzing human whole blood spiked with National Institute of Standard and Technology traceable materials: the dilution factor used during sample preparation, sample rinse time, diluent composition, and kinetic energy discrimination gas flow rate. The results at the increased and decreased levels for each parameter were statistically compared to the results obtained at the optimized parameters. We assessed the degree of reproducibility obtained under a variety of conditions and evaluated the method's robustness by analyzing the same set of proficiency testing samples by different analysts, on different instruments, with different reagents, and on different days. The short-term stability of chromium and cobalt in human blood samples stored at room temperature was monitored over a time period of 64 hours by diluting and analyzing samples at different time intervals. The stability of chromium and cobalt post-dilution was also evaluated over a period of 48 hours and at two storage temperatures (room temperature and refrigerated at 4°C). The results obtained during the stability studies showed that chromium and cobalt are stable in human blood for a period of 64 hours.

9.
Pediatrics ; 140(2)2017 Aug.
Article in English | MEDLINE | ID: mdl-28771411

ABSTRACT

In 2012, the Centers for Disease Control and Prevention (CDC) adopted its Advisory Committee on Childhood Lead Poisoning Prevention recommendation to use a population-based reference value to identify children and environments associated with lead hazards. The current reference value of 5 µg/dL is calculated as the 97.5th percentile of the distribution of blood lead levels (BLLs) in children 1 to 5 years old from 2007 to 2010 NHANES data. We calculated and updated selected percentiles, including the 97.5th percentile, by using NHANES 2011 to 2014 blood lead data and examined demographic characteristics of children whose blood lead was ≥90th percentile value. The 97.5th percentile BLL of 3.48 µg/dL highlighted analytical laboratory and clinical interpretation challenges of blood lead measurements ≤5 µg/dL. Review of 5 years of results for target blood lead values <11 µg/dL for US clinical laboratories participating in the CDC's voluntary Lead and Multi-Element Proficiency quality assurance program showed 40% unable to quantify and reported a nondetectable result at a target blood lead value of 1.48 µg/dL, compared with 5.5% at a target BLL of 4.60 µg/dL. We describe actions taken at the CDC's Environmental Health Laboratory in the National Center for Environmental Health, which measures blood lead for NHANES, to improve analytical accuracy and precision and to reduce external lead contamination during blood collection and analysis.


Subject(s)
Lead Poisoning/blood , Lead Poisoning/prevention & control , Lead/blood , Child, Preschool , Female , Humans , Infant , Laboratory Proficiency Testing , Male , Mass Screening , Nutrition Surveys , Quality Assurance, Health Care , Reference Values , United States
10.
J Anal Toxicol ; 40(3): 222-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26912563

ABSTRACT

In this study, we evaluated the effect of temperature on the long-term stability of three mercury species in bovine blood. We used inductively coupled plasma mass spectrometry (ICP-MS) analysis to determine the concentrations of inorganic (iHg), methyl (MeHg) and ethyl (EtHg) mercury species in two blood pools stored at temperatures of -70, -20, 4, 23°C (room temperature) and 37°C. Over the course of a year, we analyzed aliquots of pooled specimens at time intervals of 1, 2, 4 and 6 weeks and 2, 4, 6, 8, 10 and 12 months. We applied a fixed-effects linear model, step-down pairwise comparison and coefficient of variation statistical analysis to examine the temperature and time effects on changes in mercury species concentrations. We observed several instances of statistically significant differences in mercury species concentrations between different temperatures and time points; however, with considerations of experimental factors (such as instrumental drift and sample preparation procedures), not all differences were scientifically important. We concluded that iHg, MeHg and EtHg species in bovine whole blood were stable at -70, -20, 4 and 23°C for 1 year, but blood samples stored at 37°C were stable for no more than 2 weeks.


Subject(s)
Ethylmercury Compounds/blood , Mercury/blood , Methylmercury Compounds/blood , Drug Stability , Drug Storage , Ethylmercury Compounds/chemistry , Humans , Mass Spectrometry , Mercury/chemistry , Methylmercury Compounds/chemistry , Spectrophotometry, Atomic , Temperature , Time Factors
11.
Environ Res ; 134: 257-64, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25173092

ABSTRACT

BACKGROUND: Despite the public health and toxicologic interest in methyl mercury (MeHg) and ethyl mercury (EHg), these mercury species have been technically difficult to measure in large population studies. METHODS: Using NHANES 2011-2012 data, we calculated reference ranges and examined demographic factors associated with specific mercury species concentrations and the ratio of MeHg to THg. We conducted several multiple regression analyses to examine factors associated with MeHg concentrations and also with the ratio of MeHg to THg. RESULTS: Asians had the highest geometric mean concentrations for MeHg, 1.58 µg/L (95% CI 1.29, 1.93) and THg, 1.86 µg/L (1.58, 2.19), followed by non-Hispanic blacks with MeHg, 0.52 µg/L (0.39, 0.68) and THg, 0.68 µg/L (0.54, 0.85). Greater education attainment in adults and male sex were associated with higher MeHg and THg concentrations. Race/ethnicity, age, and sex were significant predictors of MeHg concentrations, which increased with age and were highest in Asians in all age categories, followed by non-Hispanic blacks. Mexican Americans had the lowest adjusted MeHg concentrations. The ratio of MeHg to THg was highest in Asians, varied by racial/ethnic group, and increased with age in a non-linear fashion. The amount of increase in the MeHg to THg ratio with age depended on the initial ratio, with a greater increase as age increased. Of the overall population, 3.05% (95% CI 1.77, 4.87) had MeHg concentrations >5.8 µg/L (a value that corresponds to the U.S. EPA reference dose). The prevalence was highest in Asians at 15.85% (95% CI 11.85, 20.56), increased with age, reaching a maximum of 9.26% (3.03, 20.42) at ages 60-69 years. Females 16-44 years old had a 1.76% (0.82-3.28) prevalence of MeHg concentrations >5.8 µg/L. CONCLUSIONS: Asians, males, older individuals, and adults with greater educational attainment had higher MeHg concentrations. The ratio of MeHg to THg varied with racial/ethnic group, increased with age, and was nonlinear. U.S. population reference values for MeHg and the ratio of MeHg to THg can assist in more precise assessment of public health risk from MeHg consumed in seafood.


Subject(s)
Mercury/blood , Methylmercury Compounds/blood , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Nutrition Surveys , United States , Young Adult
12.
Anal Bioanal Chem ; 406(20): 5039-47, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24948088

ABSTRACT

The measurement of different mercury compounds in human blood can provide valuable information about the type of mercury exposure. To this end, our laboratory developed a biomonitoring method for the quantification of inorganic (iHg), methyl (MeHg), and ethyl (EtHg) mercury in whole blood using a triple-spike isotope dilution (TSID) quantification method employing capillary gas chromatography (GC) and inductively coupled dynamic reaction cell mass spectrometry (ICP-DRC-MS). We used a robotic CombiPAL(®) sample handling station featuring twin fiber-based solid-phase microextraction (SPME) injector heads. The use of two SPME fibers significantly reduces sample analysis cycle times making this method very suitable for high sample throughput, which is a requirement for large public health biomonitoring studies. Our sample preparation procedure involved solubilization of blood samples with tetramethylammonium hydroxide (TMAH) followed by the derivatization with sodium tetra(n-propyl)borate (NaBPr(4)) to promote volatility of mercury species. We thoroughly investigated mercury species stability in the blood matrix during the course of sample treatment and analysis. The method accuracy for quantifying iHg, MeHg, and EtHg was validated using NIST standard reference materials (SRM 955c level 3) and the Centre de Toxicologie du Québec (CTQ) proficiency testing (PT) samples. The limit of detection (LOD) for iHg, MeHg, and EtHg in human blood was determined to be 0.27, 0.12, and 0.16 µg/L, respectively.

13.
J Neurosci ; 24(45): 10260-5, 2004 Nov 10.
Article in English | MEDLINE | ID: mdl-15537898

ABSTRACT

Weight-conscious subjects and diabetics use the sulfonyl amide sweeteners saccharin and acesulfame K to reduce their calorie and sugar intake. However, the intrinsic bitter aftertaste, which is caused by unknown mechanisms, limits the use of these sweeteners. Here, we show by functional expression experiments in human embryonic kidney cells that saccharin and acesulfame K activate two members of the human TAS2R family (hTAS2R43 and hTAS2R44) at concentrations known to stimulate bitter taste. These receptors are expressed in tongue taste papillae. Moreover, the sweet inhibitor lactisole did not block the responses of cells transfected with TAS2R43 and TAS2R44, whereas it did block the response of cells expressing the sweet taste receptor heteromer hTAS1R2-hTAS1R3. The two receptors were also activated by nanomolar concentrations of aristolochic acid, a purely bitter-tasting compound. Thus, hTAS2R43 and hTAS2R44 function as cognate bitter taste receptors and do not contribute to the sweet taste of saccharin and acesulfame K. Consistent with the in vitro data, cross-adaptation studies in human subjects also support the existence of common receptors for both sulfonyl amide sweeteners.


Subject(s)
Receptors, G-Protein-Coupled/physiology , Saccharin/pharmacology , Sweetening Agents/pharmacology , Taste , Thiazines/pharmacology , Aristolochic Acids/pharmacology , Benzene Derivatives/pharmacology , Benzyl Alcohols/pharmacology , Calcium Signaling/drug effects , Cell Line/drug effects , Dose-Response Relationship, Drug , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/physiology , Glucosides , Humans , Kidney , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Recombinant Fusion Proteins/physiology , Taste/physiology , Tongue/physiology , Tongue/ultrastructure , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...