Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38925654

ABSTRACT

Differences between arbuscular (AM) and ectomycorrhizal (EcM) trees strongly influence forest ecosystem processes, in part through their impact on saprotrophic fungal communities. Ericoid mycorrhizal (ErM) shrubs likely also impact saprotrophic communities given that they can shape nutrient cycling by slowing decomposition rates and intensifying nitrogen limitation. We investigated the depth distributions of saprotrophic and EcM fungal communities in paired subplots with and without a common understory ErM shrub, mountain laurel (Kalmia latifolia L.), across an AM to EcM tree dominance gradient in a temperate forest by analyzing soils from the organic, upper mineral (0-10 cm), and lower mineral (cumulative depth of 30 cm) horizons. The presence of K. latifolia was strongly associated with the taxonomic and functional composition of saprotrophic and EcM communities. Saprotrophic richness was consistently lower in the Oa horizon when this ErM shrub species was present. However, in AM tree-dominated plots, the presence of the ErM shrub was associated with a higher relative abundance of saprotrophs. Given that EcM trees suppress both the diversity and relative abundance of saprotrophic communities, our results suggest that separate consideration of ErM shrubs and EcM trees may be necessary when assessing the impacts of plant mycorrhizal associations on belowground communities.


Subject(s)
Biodiversity , Mycorrhizae , Soil Microbiology , Trees , Mycorrhizae/genetics , Mycorrhizae/physiology , Mycorrhizae/growth & development , Mycorrhizae/classification , Trees/microbiology , Forests , Mycobiome , Fungi/classification , Fungi/genetics , Fungi/growth & development , Soil/chemistry , Ecosystem
2.
J Anim Ecol ; 92(12): 2280-2296, 2023 12.
Article in English | MEDLINE | ID: mdl-37667666

ABSTRACT

Animals interact with and impact ecosystem biogeochemical cycling-processes known as zoogeochemistry. While the deposition of various animal materials (e.g. carcasses and faeces) has been shown to create nutrient hotspots and alter nutrient cycling and storage, the inputs from parturition (i.e. calving) have yet to be explored. We examine the effects of ungulate parturition, which often occurs synchronously during spring green-up and therefore aligns with increased plant nitrogen demand in temperate biomes. Impacts of zoogeochemical inputs are likely context-dependent, where differences in material quality, quantity and the system of deposition modulate their impacts. Plant mycorrhizal associations, especially, create different nutrient-availability contexts, which can modify the effects of nutrient inputs. We, therefore, hypothesize that mycorrhizal associations modulate the consequences of parturition on soil nutrient dynamics and nitrogen pools. We established experimental plots that explore the potential of two kinds of zoogeochemical inputs deposited at ungulate parturition (placenta and natal fluid) in forest microsites dominated by either ericoid mycorrhizal (ErM) or ectomycorrhizal (EcM) plants. We assess how these inputs affect rates of nutrient cycling and nitrogen content in various ecosystem pools, using isotope tracers to track the fate of nitrogen inputs into plant and soil pools. Parturition treatments accelerate nutrient cycling processes and increase nitrogen contents in the plant leaf, stem and fine root pools. The ecosystem context strongly modulates these effects. Microsites dominated by ErM plants mute parturition treatment impacts on most nutrient cycling processes and plant pools. Both plant-fungal associations are, however, equally efficient at retaining nitrogen, although retention of nitrogen in the parturition treatment plots was more than two times lower than in control plots. Our results highlight the potential importance of previously unexamined nitrogen inputs from animal inputs, such as those from parturition, in contributing to fine-scale heterogeneity in nutrient cycling and availability. Animal inputs should therefore be considered, along with their interactions with plant mycorrhizal associations, in terms of how zoogeochemical dynamics collectively affect nutrient heterogeneity in ecosystems.


Subject(s)
Mycorrhizae , Animals , Ecosystem , Forests , Plants/microbiology , Mammals , Nitrogen , Soil/chemistry , Soil Microbiology , Plant Roots/microbiology
3.
Glob Chang Biol ; 29(20): 5924-5940, 2023 10.
Article in English | MEDLINE | ID: mdl-37480162

ABSTRACT

Plant mycorrhizal associations influence the accumulation and persistence of soil organic matter and could therefore shape ecosystem biogeochemical responses to global changes that are altering forest composition. For instance, arbuscular mycorrhizal (AM) tree dominance is increasing in temperate forests, and ericoid mycorrhizal (ErM) shrubs can respond positively to canopy disturbances. Yet how shifts in the co-occurrence of trees and shrubs with different mycorrhizal associations will affect soil organic matter pools remains largely unknown. We examine the effects of ErM shrubs on soil carbon and nitrogen stocks and indicators of microbial activity at different depths across gradients of AM versus ectomycorrhizal (EcM) tree dominance in three temperate forest sites. We find that ErM shrubs strongly modulate tree mycorrhizal dominance effects. In surface soils, ErM shrubs increase particulate organic matter accumulation and weaken the positive relationship between soil organic matter stocks and indicators of microbial activity. These effects are strongest under AM trees that lack fungal symbionts that can degrade organic matter. In subsurface soil organic matter pools, by contrast, tree mycorrhizal dominance effects are stronger than those of ErM shrubs. Ectomycorrhizal tree dominance has a negative influence on particulate and mineral-associated soil organic matter pools, and these effects are stronger for nitrogen than for carbon stocks. Our findings suggest that increasing co-occurrence of ErM shrubs and AM trees will enhance particulate organic matter accumulation in surface soils by suppressing microbial activity while having little influence on mineral-associated organic matter in subsurface soils. Our study highlights the importance of considering interactions between co-occurring plant mycorrhizal types, as well as their depth-dependent effects, for projecting changes in soil carbon and nitrogen stocks in response to compositional shifts in temperate forests driven by disturbances and global change.


Subject(s)
Mycorrhizae , Trees , Ecosystem , Carbon , Nitrogen , Soil
4.
New Phytol ; 235(5): 1701-1718, 2022 09.
Article in English | MEDLINE | ID: mdl-35704030

ABSTRACT

Ericoid mycorrhizal (ErM) shrubs commonly occur in forest understories and could therefore alter arbuscular (AM) and/or ectomycorrhizal (EcM) tree effects on soil carbon and nitrogen dynamics. Specifically, ErM fungi have extensive organic matter decay capabilities, and ErM plant and fungal tissues have high concentrations of secondary compounds that can form persistent complexes in the soil. Together, these traits could contribute to organic matter accumulation and inorganic nutrient limitation. These effects could also differ in AM- vs EcM-dominated stands at multiple scales within and among forest biomes by, for instance, altering fungal guild interactions. Most work on ErM effects in forests has been conducted in boreal forests dominated by EcM trees. However, ErM plants occur in c. 96, 69 and 29% of boreal, temperate and tropical forests, respectively. Within tropical montane forests, the effects of ErM plants could be particularly pronounced because their traits are more distinct from AM than EcM trees. Because ErM fungi can function as free-living saprotrophs, they could also be more resilient to forest disturbances than obligate symbionts. Further consideration of ErM effects within and among forest biomes could improve our understanding of how cooccurring mycorrhizal types interact to collectively affect soil carbon and nitrogen dynamics under changing conditions.


Subject(s)
Mycorrhizae , Carbon , Forests , Fungi , Nitrogen , Plants/microbiology , Soil , Soil Microbiology , Trees/microbiology
5.
Ecol Appl ; 31(5): e02336, 2021 07.
Article in English | MEDLINE | ID: mdl-33783049

ABSTRACT

As urbanization increases worldwide, investments in nature-based solutions that aim to mitigate urban stressors and counter the impacts of global climate change are also on the rise. Tree planting on degraded urban lands-or afforestation-is one form of nature-based solution that has been increasingly implemented in cities around the world. The benefits of afforestation are, however, contingent on the capacity of soils to support the growth of planted trees, which poses a challenge in some urban settings where unfavorable soil conditions limit tree performance. Soil-focused site treatments could help urban areas overcome impediments to afforestation, yet few studies have examined the long-term (>5 yr) effects of site treatments on soils and other management objectives. We analyzed the impacts of compost amendments, interplanting with shrubs, and tree species composition (six species vs. two species) on soil conditions and associated tree growth in 54 experimental afforestation plots in New York City, USA. We compared baseline soil conditions to conditions after 6 yr and examined changes in the treatment effects from 1 to 6 yr. Site treatments and tree planting increased soil microbial biomass, water holding capacity, and total carbon and nitrogen, and reduced soil pH and bulk density relative to baseline conditions. These changes were most pronounced in compost-amended plots, and the effects of the shrub and species composition treatments were minimal. In fact, compost was key to sustaining long-term changes in soil carbon stocks, which increased by 17% in compost-amended plots but declined in unamended plots. Plots amended with compost also had 59% more nitrogen than unamended plots, which was associated with a 20% increase in the basal area of planted trees. Improvements in soil conditions after 6 yr departed from the initial trends observed after 1 yr, highlighting the importance of longer-term studies to quantify restoration success. Altogether, our results show that site treatments and tree planting can have long-lasting impacts on soil conditions and that these changes can support multiple urban land management objectives.


Subject(s)
Forests , Soil , Carbon , Carbon Sequestration , Trees
SELECTION OF CITATIONS
SEARCH DETAIL