Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 9(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38132678

ABSTRACT

In advanced driver assistance systems (ADAS) or autonomous vehicle research, acquiring semantic information about the surrounding environment generally relies heavily on camera-based object detection. Image signal processors (ISPs) in cameras are generally tuned for human perception. In most cases, ISP parameters are selected subjectively and the resulting image differs depending on the individual who tuned it. While the installation of cameras on cars started as a means of providing a view of the vehicle's environment to the driver, cameras are increasingly becoming part of safety-critical object detection systems for ADAS. Deep learning-based object detection has become prominent, but the effect of varying the ISP parameters has an unknown performance impact. In this study, we analyze the performance of 14 popular object detection models in the context of changes in the ISP parameters. We consider eight ISP blocks: demosaicing, gamma, denoising, edge enhancement, local tone mapping, saturation, contrast, and hue angle. We investigate two raw datasets, PASCALRAW and a custom raw dataset collected from an advanced driver assistance system (ADAS) perspective. We found that varying from a default ISP degrades the object detection performance and that the models differ in sensitivity to varying ISP parameters. Finally, we propose a novel methodology that increases object detection model robustness via ISP variation data augmentation.

2.
Sensors (Basel) ; 23(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904976

ABSTRACT

Interacting with other roads users is a challenge for an autonomous vehicle, particularly in urban areas. Existing vehicle systems behave in a reactive manner, warning the driver or applying the brakes when the pedestrian is already in front of the vehicle. The ability to anticipate a pedestrian's crossing intention ahead of time will result in safer roads and smoother vehicle maneuvers. The problem of crossing intent forecasting at intersections is formulated in this paper as a classification task. A model that predicts pedestrian crossing behaviour at different locations around an urban intersection is proposed. The model not only provides a classification label (e.g., crossing, not-crossing), but a quantitative confidence level (i.e., probability). The training and evaluation are carried out using naturalistic trajectories provided by a publicly available dataset recorded from a drone. Results show that the model is able to predict crossing intention within a 3-s time window.

SELECTION OF CITATIONS
SEARCH DETAIL
...