Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 27(13): 3030-3035, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28526367

ABSTRACT

We report the discovery of a novel aminopyrazine series of PI3Kα inhibitors, designed by hybridizing two known scaffolds of PI3K inhibitors. We describe the progress achieved from the first compounds plagued with poor general kinase selectivity to compounds showing high selectivity for PI3Kα over PI3Kß and excellent general kinase selectivity. This effort culminated with the identification of compound 5 displaying high potency and selectivity, and suitable physiochemical and pharmacokinetic properties for oral administration. In vivo, compound 5 showed good inhibition of tumour growth (86% tumour growth inhibition at 50mg/kg twice daily orally) in the MCF7 xenograft model in mice.


Subject(s)
Drug Discovery , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Class I Phosphatidylinositol 3-Kinases , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 27(9): 1949-1954, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28347666

ABSTRACT

Attempts to lock the active conformation of compound 4, a PI3Kß/δ inhibitor (PI3Kß cell IC50 0.015µM), led to the discovery of a series of 8-(1-phenylpyrrolidin-2-yl)-6-carboxamide-2-morpholino-4H-chromen-4-ones, which showed high levels of potency and selectivity as PI3Kß/δ inhibitors. Compound 10 proved exquisitely potent and selective: PI3Kß cell IC50 0.0011µM in PTEN null MDA-MB-468 cell and PI3Kδ cell IC50 0.014µM in Jeko-1 B-cell, and exhibited suitable physical properties for oral administration. In vivo, compound 10 showed profound pharmacodynamic modulation of AKT phosphorylation in a mouse PTEN-null PC3 prostate tumour xenograft after a single oral dose and gave excellent tumour growth inhibition in the same model after chronic oral dosing. Based on these results, compound 10 was selected as one of our PI3Kß/δ preclinical candidates.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Benzopyrans/chemistry , Benzopyrans/therapeutic use , PTEN Phosphohydrolase/genetics , Phosphoinositide-3 Kinase Inhibitors , Prostatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacokinetics , Benzopyrans/pharmacology , Cell Line, Tumor , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Dogs , Gene Deletion , Humans , Male , Mice, Nude , Molecular Docking Simulation , Morpholinos/chemistry , Morpholinos/pharmacokinetics , Morpholinos/pharmacology , Morpholinos/therapeutic use , Prostate/drug effects , Prostate/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
3.
J Med Chem ; 59(17): 7801-17, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27528113

ABSTRACT

Here we report the discovery and optimization of a series of bivalent bromodomain and extraterminal inhibitors. Starting with the observation of BRD4 activity of compounds from a previous program, the compounds were optimized for BRD4 potency and physical properties. The optimized compound from this campaign exhibited excellent pharmacokinetic profile and exhibited high potency in vitro and in vivo effecting c-Myc downregulation and tumor growth inhibition in xenograft studies. This compound was selected as the development candidate, AZD5153. The series showed enhanced potency as a result of bivalent binding and a clear correlation between BRD4 activity and cellular potency.


Subject(s)
Antineoplastic Agents/chemistry , Heterocyclic Compounds, 2-Ring/chemistry , Nuclear Proteins/antagonists & inhibitors , Piperazines/chemistry , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Caco-2 Cells , Cell Cycle Proteins , Crystallography, X-Ray , Dogs , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Heterocyclic Compounds, 2-Ring/pharmacology , Heterografts , Humans , Mice, SCID , Neoplasm Transplantation , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Conformation , Pyrazoles , Pyridazines , Rats , Stereoisomerism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 26(9): 2318-23, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26996374

ABSTRACT

We report the discovery and optimisation of a series of 8-(2,3-dihydro-1,4-benzoxazin-4-ylmethyl)-2-morpholino-4-oxo-chromene-6-carboxamides, leading to compound 16 as a potent and selective PI3Kß/δ inhibitor: PI3Kß cell IC50 0.012 µM (in PTEN null MDA-MB-468 cell) and PI3Kδ cell IC50 0.047 µM (in Jeko-1 B-cell), with good pharmacokinetics and physical properties. In vivo, 16 showed profound pharmacodynamic modulation of AKT phosphorylation in a mouse PTEN-deficient PC3 prostate tumour xenograft after a single oral dose and gave excellent tumour growth inhibition in the same model after chronic oral dosing. Compound 16 was selected as a preclinical candidate for the treatment of PTEN-deficient tumours.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , Morpholinos/chemistry , Morpholinos/pharmacology , PTEN Phosphohydrolase/genetics , Phosphoinositide-3 Kinase Inhibitors , Animals , Cell Line, Tumor , Humans , Mice , Phosphorylation
5.
Mol Cancer Ther ; 15(5): 877-89, 2016 05.
Article in English | MEDLINE | ID: mdl-26839307

ABSTRACT

The PIK3CA gene, encoding the p110α catalytic unit of PI3Kα, is one of the most frequently mutated oncogenes in human cancer. Hence, PI3Kα is a target subject to intensive efforts in identifying inhibitors and evaluating their therapeutic potential. Here, we report studies with a novel PI3K inhibitor, AZD8835, currently in phase I clinical evaluation. AZD8835 is a potent inhibitor of PI3Kα and PI3Kδ with selectivity versus PI3Kß, PI3Kγ, and other kinases that preferentially inhibited growth in cells with mutant PIK3CA status, such as in estrogen receptor-positive (ER(+)) breast cancer cell lines BT474, MCF7, and T47D (sub-µmol/L GI50s). Consistent with this, AZD8835 demonstrated antitumor efficacy in corresponding breast cancer xenograft models when dosed continuously. In addition, an alternative approach of intermittent high-dose scheduling (IHDS) was explored given our observations that higher exposures achieved greater pathway inhibition and induced apoptosis. Indeed, using IHDS, monotherapy AZD8835 was able to induce tumor xenograft regression. Furthermore, AZD8835 IHDS in combination with other targeted therapeutic agents further enhanced antitumor activity (up to 92% regression). Combination partners were prioritized on the basis of our mechanistic insights demonstrating signaling pathway cross-talk, with a focus on targeting interdependent ER and/or CDK4/6 pathways or alternatively a node (mTOR) in the PI3K-pathway, approaches with demonstrated clinical benefit in ER(+) breast cancer patients. In summary, AZD8835 IHDS delivers strong antitumor efficacy in a range of combination settings and provides a promising alternative to continuous dosing to optimize the therapeutic index in patients. Such schedules merit clinical evaluation. Mol Cancer Ther; 15(5); 877-89. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Oxadiazoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Piperidines/pharmacology , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cluster Analysis , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Gene Expression Profiling , Humans , Isoenzymes , Mice , Oxadiazoles/chemistry , Piperidines/chemistry , Xenograft Model Antitumor Assays
6.
Sci Rep ; 6: 19771, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26813959

ABSTRACT

A major roadblock in the effective treatment of cancers is their heterogeneity, whereby multiple molecular landscapes are classified as a single disease. To explore the contribution of cellular metabolism to cancer heterogeneity, we analyse the Metabric dataset, a landmark genomic and transcriptomic study of 2,000 individual breast tumours, in the context of the human genome-scale metabolic network. We create personalized metabolic landscapes for each tumour by exploring sets of active reactions that satisfy constraints derived from human biochemistry and maximize congruency with the Metabric transcriptome data. Classification of the personalized landscapes derived from 997 tumour samples within the Metabric discovery dataset reveals a novel poor prognosis cluster, reproducible in the 995-sample validation dataset. We experimentally follow mechanistic hypotheses resulting from the computational study and establish that active serotonin production is a major metabolic feature of the poor prognosis group. These data support the reconsideration of concomitant serotonin-specific uptake inhibitors treatment during breast cancer chemotherapy.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Metabolome , Metabolomics , Serotonin/biosynthesis , Biomarkers, Tumor , Breast Neoplasms/genetics , Cell Line, Tumor , Cluster Analysis , Computational Biology/methods , Extracellular Matrix , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Metabolomics/methods , Models, Biological , Prognosis , Transcriptome
7.
NPJ Syst Biol Appl ; 2: 16032, 2016.
Article in English | MEDLINE | ID: mdl-28725480

ABSTRACT

Systems Biology has established numerous approaches for mechanistic modeling of molecular networks in the cell and a legacy of models. The current frontier is the integration of models expressed in different formalisms to address the multi-scale biological system organization challenge. We present MUFINS (MUlti-Formalism Interaction Network Simulator) software, implementing a unique set of approaches for multi-formalism simulation of interaction networks. We extend the constraint-based modeling (CBM) framework by incorporation of linear inhibition constraints, enabling for the first time linear modeling of networks simultaneously describing gene regulation, signaling and whole-cell metabolism at steady state. We present a use case where a logical hypergraph model of a regulatory network is expressed by linear constraints and integrated with a Genome-Scale Metabolic Network (GSMN) of mouse macrophage. We experimentally validate predictions, demonstrating application of our software in an iterative cycle of hypothesis generation, validation and model refinement. MUFINS incorporates an extended version of our Quasi-Steady State Petri Net approach to integrate dynamic models with CBM, which we demonstrate through a dynamic model of cortisol signaling integrated with the human Recon2 GSMN and a model of nutrient dynamics in physiological compartments. Finally, we implement a number of methods for deriving metabolic states from ~omics data, including our new variant of the iMAT congruency approach. We compare our approach with iMAT through the analysis of 262 individual tumor transcriptomes, recovering features of metabolic reprogramming in cancer. The software provides graphics user interface with network visualization, which facilitates use by researchers who are not experienced in coding and mathematical modeling environments.

8.
Bioorg Med Chem Lett ; 25(22): 5155-62, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26475521

ABSTRACT

Starting from potent inhibitors of PI3Kα having poor general kinase selectivity (e.g., 1 and 2), optimisation of this series led to the identification of 25, a potent inhibitor of PI3Kα (wild type, E545K and H1047R mutations) and PI3Kδ, selective versus PI3Kß and PI3Kγ, with excellent general kinase selectivity. Compound 25 displayed low metabolic turnover and suitable physical properties for oral administration. In vivo, compound 25 showed pharmacodynamic modulation of AKT phosphorylation and near complete inhibition of tumour growth (93% tumour growth inhibition) in a murine H1047R PI3Kα mutated SKOV-3 xenograft tumour model after chronic oral administration at 25mg/kg b.i.d. Compound 25, also known as AZD8835, is currently in phase I clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Oxadiazoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Dogs , Humans , Mice , Mice, Nude , Mice, SCID , Molecular Docking Simulation , Oxadiazoles/chemical synthesis , Piperidines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Rats , Xenograft Model Antitumor Assays
9.
Bioorg Med Chem Lett ; 25(13): 2679-85, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25980912

ABSTRACT

Starting from compound 1, a potent PI3Kα inhibitor having poor general kinase selectivity, we used structural data and modelling to identify key exploitable differences between PI3Kα and the other kinases. This approach led us to design chemical modifications of the central pyrazole, which solved the poor kinase selectivity seen as a strong liability for the initial compound 1. Amongst the modifications explored, a 1,3,4-triazole ring (as in compound 4) as a replacement of the initial pyrazole provided good potency against PI3Kα, with excellent kinase selectivity.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Amino Acid Sequence , Binding Sites , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/genetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Drug Design , Enzyme Inhibitors/chemical synthesis , Humans , Models, Molecular , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/chemistry , Mutant Proteins/genetics , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/genetics , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology
10.
Mol Cancer Ther ; 14(1): 48-58, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398829

ABSTRACT

Loss of PTEN protein results in upregulation of the PI3K/AKT pathway, which appears dependent on the PI3Kß isoform. Inhibitors of PI3Kß have potential to reduce growth of tumors in which loss of PTEN drives tumor progression. We have developed a small-molecule inhibitor of PI3Kß and PI3Kδ (AZD8186) and assessed its antitumor activity across a panel of cell lines. We have then explored the antitumor effects as single agent and in combination with docetaxel in triple-negative breast (TNBC) and prostate cancer models. In vitro, AZD8186 inhibited growth of a range of cell lines. Sensitivity was associated with inhibition of the AKT pathway. Cells sensitive to AZD8186 (GI50 < 1 µmol/L) are enriched for, but not exclusively associated with, PTEN deficiency. In vivo, AZD8186 inhibits PI3K pathway biomarkers in prostate and TNBC tumors. Scheduling treatment with AZD8186 shows antitumor activity required only intermittent exposure, and that increased tumor control is achieved when AZD8186 is used in combination with docetaxel. AZD8186 is a potent inhibitor of PI3Kß with activity against PI3Kδ signaling, and has potential to reduce growth of tumors dependent on dysregulated PTEN for growth. Moreover, AZD8186 can be combined with docetaxel, a chemotherapy commonly used to treat advanced TBNC and prostate tumors. The ability to schedule AZD8186 and maintain efficacy offers opportunity to combine AZD8186 more effectively with other drugs.


Subject(s)
Aniline Compounds/administration & dosage , Antineoplastic Agents/administration & dosage , Chromones/administration & dosage , Phosphoinositide-3 Kinase Inhibitors , Prostatic Neoplasms/drug therapy , Signal Transduction/drug effects , Taxoids/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Chromones/pharmacology , Docetaxel , Drug Synergism , Female , Humans , Male , Mice , PTEN Phosphohydrolase/deficiency , Prostatic Neoplasms/metabolism , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
11.
J Med Chem ; 58(2): 943-62, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25514658

ABSTRACT

Several studies have highlighted the dependency of PTEN deficient tumors to PI3Kß activity and specific inhibition of PI3Kδ has been shown activity against human B-cell cancers. We describe the discovery and optimization of a series of 8-(1-anilino)ethyl)-2-morpholino-4-oxo-4H-chromene-6-carboxamides as PI3Kß/δ inhibitors, which led to the discovery of the clinical candidate 13, also known as AZD8186. On the basis of the lower lipophilicity of the chromen-4-one core compared to the previously utilized pyrido[1,2-a]pyrimid-4-one core, this series of compounds displayed high metabolic stability and suitable physical properties for oral administration. Compound 13 showed profound pharmacodynamic modulation of p-Akt in PTEN-deficient PC3 prostate tumor bearing mice after oral administration and showed complete inhibition of tumor growth in the mouse PTEN-deficient PC3 prostate tumor xenograft model. 13 was selected as a clinical candidate for treatment of PTEN-deficient cancers and has recently entered phase I clinical trials.


Subject(s)
Aniline Compounds/chemical synthesis , Chromones/chemical synthesis , Neoplasms, Experimental/drug therapy , PTEN Phosphohydrolase/deficiency , Phosphoinositide-3 Kinase Inhibitors , Aniline Compounds/pharmacology , Animals , Chromones/pharmacology , Dogs , Drug Discovery , Humans , Male , Mice , Neoplasms, Experimental/chemistry , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 24(16): 3928-35, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24992874

ABSTRACT

Starting from TGX-221, we designed a series of 9-(1-anilinoethyl)-2-morpholino-4-oxo-pyrido[1,2-a]pyrimidine-7-carboxamides as potent and selective PI3Kß/δ inhibitors. Structure-activity relationships and structure-property relationships around the aniline and the amide substituents are discussed. We identified compounds 17 and 18, which showed profound pharmacodynamic modulation of phosphorylated Akt in the PC3 prostate tumour xenograft, after a single oral dose. Compound 17 also gave significant inhibition of tumour growth in the PC3 prostate tumour xenograft model after chronic oral dosing.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Drug Discovery , Neoplasms, Experimental/drug therapy , PTEN Phosphohydrolase/deficiency , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Amides/administration & dosage , Amides/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Structure , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/pathology , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
13.
Methods Mol Biol ; 1008: 327-55, 2013.
Article in English | MEDLINE | ID: mdl-23729258

ABSTRACT

Biophysical methods have become established in many areas of drug discovery. Application of these methods was once restricted to a relatively small number of scientists using specialized, low throughput technologies and methods. Now, automated high-throughput instruments are to be found in a growing number of laboratories. Many biophysical methods are capable of measuring the equilibrium binding constants between pairs of molecules crucial for molecular recognition processes, encompassing protein-protein, protein-small molecule, and protein-nucleic acid interactions, and several can be used to measure the kinetic or thermodynamic components controlling these biological processes. For a full characterization of a binding process, determinations of stoichiometry, binding mode, and any conformational changes associated with such interactions are also required. The suite of biophysical methods that are now available represents a powerful toolbox of techniques which can effectively deliver this full characterization.The aim of this chapter is to provide the reader with an overview of the drug discovery process and how biophysical methods, such as surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), nuclear magnetic resonance, mass spectrometry (MS), and thermal unfolding methods can answer specific questions in order to influence project progression and outcomes. The selection of these examples is based upon the experiences of the authors at AstraZeneca, and relevant approaches are highlighted where they have utility in a particular drug discovery scenario.


Subject(s)
Drug Discovery , Nucleic Acids/chemistry , Proteins/chemistry , Small Molecule Libraries/chemistry , Binding Sites , Calorimetry , High-Throughput Screening Assays , Humans , Kinetics , Magnetic Resonance Spectroscopy , Protein Binding , Protein Conformation , Stereoisomerism , Surface Plasmon Resonance , Thermodynamics
14.
Bioorg Med Chem Lett ; 21(16): 4698-701, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21775140

ABSTRACT

We disclose a novel series of insulin-like growth factor-1 receptor kinase inhibitors based on the 3-(pyrimidin-4-yl)-imidazo[1,2-a]pyridine scaffold. The influence on the inhibitory activity of substitution on the imidazopyridine and at the C5 position of the pyrimidine is discussed. In the course of this optimization, we discovered a potent and selective inhibitor with suitable pharmacokinetics for oral administration.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Animals , Dogs , Humans , Mice , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Rats , Stereoisomerism , Structure-Activity Relationship , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...