Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Prev Med Rep ; 35: 102355, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37584060

ABSTRACT

Maintaining physical activity habits is important for long-term health benefits. Many children do not achieve the World Health Organization (WHO) benchmark of 60 min Moderate-to-Vigorous Physical Activity (MVPA) daily. Comprehensive school physical activity programs (CSPAP) target all opportunities at school for children to be physically active. The purpose of this intervention study was to investigate boys' and girls' voluntary participation and MVPA in physical activity recess sessions during and after these were connected with the content of physical education. 147 (55 girls, 92 boys; mean age = 8 years) second grade children from seven different schools received a 10-lesson parkour unit in physical education and were concurrently offered five parkour recess sessions. After the parkour unit in physical education (i.e., maintenance) another five parkour sessions in which children could voluntarily participate were organized. Systematic observation tools were used to assess children's MVPA. Overall participation in parkour recess was 64% for both boys and girls. Participation decreased from intervention to maintenance phase for both boys (75% vs 54%; p < .001) and girls (80% vs 49%; p < .001). MVPA was higher for boys compared to girls in parkour recess (64% vs 58%; p = .002) and traditional recess (49% vs 39%; p = .006), but not in physical education (40% vs 37%). One aspect of physical activity promotion is to connect recess activities with the content taught in physical education, which could contribute up to 20% of the daily recommended MVPA. Positive effects maintained when the connection between physical education and recess stopped.

2.
Sci Rep ; 13(1): 4719, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959247

ABSTRACT

The field of neuroscience has largely overlooked the impact of motherhood on brain function outside the context of responses to infant stimuli. Here, we apply spectral dynamic causal modelling (spDCM) to resting-state fMRI data to investigate differences in brain function between a group of 40 first-time mothers at 1-year postpartum and 39 age- and education-matched women who have never been pregnant. Using spDCM, we investigate the directionality (top-down vs. bottom-up) and valence (inhibition vs excitation) of functional connections between six key left hemisphere brain regions implicated in motherhood: the dorsomedial prefrontal cortex, ventromedial prefrontal cortex, posterior cingulate cortex, parahippocampal gyrus, amygdala, and nucleus accumbens. We show a selective modulation of inhibitory pathways related to differences between (1) mothers and non-mothers, (2) the interactions between group and cognitive performance and (3) group and social cognition, and (4) differences related to maternal caregiving behaviour. Across analyses, we show consistent disinhibition between cognitive and affective regions suggesting more efficient, flexible, and responsive behaviour, subserving cognitive performance, social cognition, and maternal caregiving. Together our results support the interpretation of these key regions as constituting a parental caregiving network. The nucleus accumbens and the parahippocampal gyrus emerging as 'hub' regions of this network, highlighting the global importance of the affective limbic network for maternal caregiving, social cognition, and cognitive performance in the postpartum period.


Subject(s)
Brain Mapping , Brain , Female , Humans , Brain/diagnostic imaging , Postpartum Period/physiology , Amygdala/physiology , Magnetic Resonance Imaging/methods , Parents
3.
Comput Biol Med ; 156: 106700, 2023 04.
Article in English | MEDLINE | ID: mdl-36871338

ABSTRACT

Accurate prediction of the trajectory of Alzheimer's disease (AD) from an early stage is of substantial value for treatment and planning to delay the onset of AD. We propose a novel attention transfer method to train a 3D convolutional neural network to predict which patients with mild cognitive impairment (MCI) will progress to AD within 3 years. A model is first trained on a separate but related source task (task we are transferring information from) to automatically learn regions of interest (ROI) from a given image. Next we train a model to simultaneously classify progressive MCI (pMCI) and stable MCI (sMCI) (the target task we want to solve) and the ROIs learned from the source task. The predicted ROIs are then used to focus the model's attention on certain areas of the brain when classifying pMCI versus sMCI. Thus, in contrast to traditional transfer learning, we transfer attention maps instead of transferring model weights from a source task to the target classification task. Our Method outperformed all methods tested including traditional transfer learning and methods that used expert knowledge to define ROI. Furthermore, the attention map transferred from the source task highlights known Alzheimer's pathology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Brain/pathology , Attention
4.
Clin Endocrinol (Oxf) ; 98(5): 692-699, 2023 05.
Article in English | MEDLINE | ID: mdl-36807922

ABSTRACT

OBJECTIVE: The role of circulating sex hormones on structural brain ageing is yet to be established. This study explored whether concentrations of circulating sex hormones in older women are associated with the baseline and longitudinal changes in structural brain ageing, defined by the brain-predicted age difference (brain-PAD). DESIGN: Prospective cohort study using data from NEURO and Sex Hormones in Older Women; substudies of the ASPirin in Reducing Events in the Elderly clinical trial. PATIENTS: Community-dwelling older women (aged 70+ years). MEASUREMENTS: Oestrone, testosterone, dehydroepiandrosterone (DHEA), and sex-hormone binding globulin (SHBG) were quantified from plasma samples collected at baseline. T1-weighted magnetic resonance imaging was performed at baseline, 1 and 3 years. Brain age was derived from whole brain volume using a validated algorithm. RESULTS: The sample comprised of 207 women not taking medications known to influence sex hormone concentrations. A statistically higher baseline brain-PAD (older brain age relative to chronological age) was seen for women in the highest DHEA tertile compared with the lowest in the unadjusted analysis (p = .04). This was not significant when adjusted for chronological age, and potential confounding health and behavioural factors. Oestrone, testosterone and SHBG were not associated with brain-PAD cross-sectionally, nor were any of the examined sex hormones or SHBG associated with brain-PAD longitudinally. CONCLUSION: No strong evidence of an association between circulating sex hormones and brain-PAD. Given there is prior evidence to suggests sex hormones may be important for brain ageing, further studies of circulating sex hormones and brain health in postmenopausal women are warranted.


Subject(s)
Estradiol , Estrone , Aged , Humans , Female , Prospective Studies , Postmenopause , Gonadal Steroid Hormones , Testosterone , Brain/metabolism , Dehydroepiandrosterone , Sex Hormone-Binding Globulin/metabolism
5.
Res Q Exerc Sport ; 94(2): 322-330, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35348439

ABSTRACT

Purpose: The purpose of this study was to compare the impact of interventions aimed at improving teacher's content knowledge on students' MVPA, on-task behavior, and skill performance. Differences between treatment and comparison groups were further examined by skill level and gender. Method: We conducted a retroactive analysis of teacher and student data from two randomly controlled trials and one well-controlled quasi-experimental trial measuring MVPA, student performance in badminton, and on-task behavior in lessons. We used descriptive and ANOVA analyses to determine our results. Results: The data show statistically significant effects for student performance and MVPA, and statistically significant effects for on-task performance between groups. Effect sizes for student performance exceed 1SD. MVPA for two of the three studies exceeded the 50% of the lesson criterion. Data are reported for high, average and low skilled students for each variable. Conclusions: This is the first study to examine three important outcomes of physical education, namely skill performance, MVPA, and on-task behavior in one investigation. Our results show that multiple objectives in physical education can be achieved. A strength of the study is that we did not sample any of our variables. The data represent a complete picture of every trial, and continuous interval recording for MVPA and on-task variables occurring in each lesson.


Subject(s)
Exercise , Schools , Humans , Motor Activity , Students , Physical Education and Training
6.
Cereb Cortex ; 33(4): 1476-1488, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35441214

ABSTRACT

A major challenge in current cognitive neuroscience is how functional brain connectivity gives rise to human cognition. Functional magnetic resonance imaging (fMRI) describes brain connectivity based on cerebral oxygenation dynamics (hemodynamic connectivity), whereas [18F]-fluorodeoxyglucose functional positron emission tomography (FDG-fPET) describes brain connectivity based on cerebral glucose uptake (metabolic connectivity), each providing a unique characterization of the human brain. How these 2 modalities differ in their contribution to cognition and behavior is unclear. We used simultaneous resting-state FDG-fPET/fMRI to investigate how hemodynamic connectivity and metabolic connectivity relate to cognitive function by applying partial least squares analyses. Results revealed that although for both modalities the frontoparietal anatomical subdivisions related the strongest to cognition, using hemodynamic measures this network expressed executive functioning, episodic memory, and depression, whereas for metabolic measures this network exclusively expressed executive functioning. These findings demonstrate the unique advantages that simultaneous FDG-PET/fMRI has to provide a comprehensive understanding of the neural mechanisms that underpin cognition and highlights the importance of multimodality imaging in cognitive neuroscience research.


Subject(s)
Connectome , Humans , Fluorodeoxyglucose F18/metabolism , Brain , Cognition , Multimodal Imaging , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods
7.
J Womens Health (Larchmt) ; 31(8): 1087-1096, 2022 08.
Article in English | MEDLINE | ID: mdl-35980243

ABSTRACT

Background: The experience and even existence of cognitive deficits in the postpartum period is uncertain, with only a few scientific studies, reporting inconsistent results. Methods: In this study, we investigate cognition in 86 women (43 first-time mothers 1 year postpartum and 43 non-mothers). Results: Mothers and non-mothers showed no significant differences on measures of objective cognition (verbal memory, working memory, and processing speed or theory of mind). Despite the absence of objective differences, mothers self-reported significantly worse subjective memory than non-mothers. To interpret the difference between objective and subjective measures of memory, we investigated relationships between subjective memory, objective memory, and wellbeing. Mothers, but not non-mothers, showed a positive correlation between subjective and objective measures of memory, indicating mothers are "in-tune" with their memory performance. Mothers also demonstrated a positive relationship between subjective memory and wellbeing (sleep, anxiety, and depression), where better wellbeing correlated with higher subjective memory. This relationship was not apparent in non-mothers. The results suggest that poorer sleep, higher anxiety, and higher depression are related to reports of poorer self-reported memory in mothers. Conclusion: Our results add to our growing understanding of maternal cognition at 1 year postpartum, with no evidence of cognitive differences between mothers and non-mothers.


Subject(s)
Cognition Disorders , Anxiety/psychology , Cognition , Cognition Disorders/diagnosis , Cognition Disorders/psychology , Female , Humans , Memory , Postpartum Period/psychology
8.
J Alzheimers Dis Rep ; 6(1): 163-176, 2022.
Article in English | MEDLINE | ID: mdl-35591948

ABSTRACT

Background: There is considerable variability in the rate at which we age biologically, and the brain is particularly susceptible to the effects of aging. Objective: We examined the test-retest reliability of brain age at one- and three-year intervals and identified characteristics that predict the longitudinal change in brain-predicted age difference (brain-PAD, defined by deviations of brain age from chronological age). Methods: T1-weighted magnetic resonance images were acquired at three timepoints from 497 community-dwelling adults (73.8±3.5 years at baseline, 48% were female). Brain age was estimated from whole brain volume, using a publicly available algorithm trained on an independent dataset. Linear mixed models were used, adjusting for sex, age, and age2. Results: Excellent retest reliability of brain age was observed over one and three years. We identified a significant sex difference in brain-PAD, where a faster rate of brain aging (worsening in brain age relative to chronological age) was observed in men, and this finding replicated in secondary analyses. The effect size, however, was relatively weak, equivalent to 0.16 years difference per year. A higher score in physical health related quality of life and verbal fluency were associated with a faster rate of brain aging, while depression was linked to a slower rate of brain aging, but these findings were not robust. Conclusion: Our study provides consistent evidence that older men have slightly faster brain atrophy than women. Given the sparsity of longitudinal research on brain age in older populations, future prospective studies are needed to confirm our findings.

9.
Gigascience ; 112022 04 30.
Article in English | MEDLINE | ID: mdl-35488859

ABSTRACT

BACKGROUND: "Functional" [18F]-fluorodeoxyglucose positron emission tomography (FDG-fPET) is a new approach for measuring glucose uptake in the human brain. The goal of FDG-fPET is to maintain a constant plasma supply of radioactive FDG in order to track, with high temporal resolution, the dynamic uptake of glucose during neuronal activity that occurs in response to a task or at rest. FDG-fPET has most often been applied in simultaneous BOLD-fMRI/FDG-fPET (blood oxygenation level-dependent functional MRI fluorodeoxyglucose functional positron emission tomography) imaging. BOLD-fMRI/FDG-fPET provides the capability to image the 2 primary sources of energetic dynamics in the brain, the cerebrovascular haemodynamic response and cerebral glucose uptake. FINDINGS: In this Data Note, we describe an open access dataset, Monash DaCRA fPET-fMRI, which contrasts 3 radiotracer administration protocols for FDG-fPET: bolus, constant infusion, and hybrid bolus/infusion. Participants (n = 5 in each group) were randomly assigned to each radiotracer administration protocol and underwent simultaneous BOLD-fMRI/FDG-fPET scanning while viewing a flickering checkerboard. The bolus group received the full FDG dose in a standard bolus administration, the infusion group received the full FDG dose as a slow infusion over the duration of the scan, and the bolus-infusion group received 50% of the FDG dose as bolus and 50% as constant infusion. We validate the dataset by contrasting plasma radioactivity, grey matter mean uptake, and task-related activity in the visual cortex. CONCLUSIONS: The Monash DaCRA fPET-fMRI dataset provides significant reuse value for researchers interested in the comparison of signal dynamics in fPET, and its relationship with fMRI task-evoked activity.


Subject(s)
Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Brain/diagnostic imaging , Glucose , Humans , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods
10.
Brain Commun ; 4(1): fcac007, 2022.
Article in English | MEDLINE | ID: mdl-35178517

ABSTRACT

This scientific commentary relates to: 'Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias' by Deistung et al. (https://doi.org/10.1093/braincomms/fcab306).

11.
Neurobiol Aging ; 109: 195-203, 2022 01.
Article in English | MEDLINE | ID: mdl-34775210

ABSTRACT

Brain age is a neuroimaging-based biomarker of aging. This study examined whether the difference between brain age and chronological age (brain-PAD) is associated with cognitive function at baseline and longitudinally. Participants were relatively healthy, predominantly white community-dwelling older adults (n = 531, aged ≥70 years), with high educational attainment (61% ≥12 years) and socioeconomic status (59% ≥75th percentile). Brain age was estimated from T1-weighted magnetic resonance images using an algorithm by Cole et al., 2018. After controlling for age, gender, education, depression and body mass index, brain-PAD was negatively associated with psychomotor speed (Symbol Digit Modalities Test) at baseline (Bonferroni p < 0.006), but was not associated with baseline verbal fluency (Controlled Oral Word Association Test), delayed recall (Hopkins Learning Test Revised), or general cognitive status (Mini-Mental State Examination). Baseline brain-PAD was not associated with 3-year change in cognition (Bonferroni p > 0.006). These findings indicate that even in relatively healthy older people, accelerated brain aging is associated with worse psychomotor speed, but future longitudinal research into changes in brain-PAD is needed.


Subject(s)
Aging/physiology , Aging/psychology , Brain/physiology , Cognition/physiology , Cognitive Aging/physiology , Cognitive Aging/psychology , Age Factors , Aged , Body Mass Index , Brain/diagnostic imaging , Brain/pathology , Diffusion Tensor Imaging , Educational Status , Female , Humans , Male , Neuroimaging , Psychomotor Performance , Reaction Time , Social Class
12.
Front Aging Neurosci ; 14: 1063721, 2022.
Article in English | MEDLINE | ID: mdl-36688169

ABSTRACT

Introduction: Neuroimaging-based 'brain age' can identify individuals with 'advanced' or 'resilient' brain aging. Brain-predicted age difference (brain-PAD) is predictive of cognitive and physical health outcomes. However, it is unknown how individual health and lifestyle factors may modify the relationship between brain-PAD and future cognitive or functional performance. We aimed to identify health-related subgroups of older individuals with resilient or advanced brain-PAD, and determine if membership in these subgroups is differentially associated with changes in cognition and frailty over three to five years. Methods: Brain-PAD was predicted from T1-weighted images acquired from 326 community-dwelling older adults (73.8 ± 3.6 years, 42.3% female), recruited from the larger ASPREE (ASPirin in Reducing Events in the Elderly) trial. Participants were grouped as having resilient (n=159) or advanced (n=167) brain-PAD, and latent class analysis (LCA) was performed using a set of cognitive, lifestyle, and health measures. We examined associations of class membership with longitudinal change in cognitive function and frailty deficit accumulation index (FI) using linear mixed models adjusted for age, sex and education. Results: Subgroups of resilient and advanced brain aging were comparable in all characteristics before LCA. Two typically similar latent classes were identified for both subgroups of brain agers: class 1 were characterized by low prevalence of obesity and better physical health and class 2 by poor cardiometabolic, physical and cognitive health. Among resilient brain agers, class 1 was associated with a decrease in cognition, and class 2 with an increase over 5 years, though was a small effect that was equivalent to a 0.04 standard deviation difference per year. No significant class distinctions were evident with FI. For advanced brain agers, there was no evidence of an association between class membership and changes in cognition or FI. Conclusion: These results demonstrate that the relationship between brain age and cognitive trajectories may be influenced by other health-related factors. In particular, people with age-resilient brains had different trajectories of cognitive change depending on their cognitive and physical health status at baseline. Future predictive models of aging outcomes will likely be aided by considering the mediating or synergistic influence of multiple lifestyle and health indices alongside brain age.

13.
Sci Data ; 8(1): 267, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654823

ABSTRACT

Understanding how the living human brain functions requires sophisticated in vivo neuroimaging technologies to characterise the complexity of neuroanatomy, neural function, and brain metabolism. Fluorodeoxyglucose positron emission tomography (FDG-PET) studies of human brain function have historically been limited in their capacity to measure dynamic neural activity. Simultaneous [18 F]-FDG-PET and functional magnetic resonance imaging (fMRI) with FDG infusion protocols enable examination of dynamic changes in cerebral glucose metabolism simultaneously with dynamic changes in blood oxygenation. The Monash vis-fPET-fMRI dataset is a simultaneously acquired FDG-fPET/BOLD-fMRI dataset acquired from n = 10 healthy adults (18-49 yrs) whilst they viewed a flickering checkerboard task. The dataset contains both raw (unprocessed) images and source data organized according to the BIDS specification. The source data includes PET listmode, normalization, sinogram and physiology data. Here, the technical feasibility of using opensource frameworks to reconstruct the PET listmode data is demonstrated. The dataset has significant re-use value for the development of new processing pipelines, signal optimisation methods, and to formulate new hypotheses concerning the relationship between neuronal glucose uptake and cerebral haemodynamics.


Subject(s)
Functional Neuroimaging , Magnetic Resonance Imaging , Positron-Emission Tomography , Visual Cortex/diagnostic imaging , Adolescent , Adult , Female , Humans , Male , Middle Aged , Visual Cortex/metabolism , Young Adult
14.
BMC Neurol ; 21(1): 312, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34384369

ABSTRACT

BACKGROUND: Brain age is a biomarker that predicts chronological age using neuroimaging features. Deviations of this predicted age from chronological age is considered a sign of age-related brain changes, or commonly referred to as brain ageing. The aim of this systematic review is to identify and synthesize the evidence for an association between lifestyle, health factors and diseases in adult populations, with brain ageing. METHODS: This systematic review was undertaken in accordance with the PRISMA guidelines. A systematic search of Embase and Medline was conducted to identify relevant articles using search terms relating to the prediction of age from neuroimaging data or brain ageing. The tables of two recent review papers on brain ageing were also examined to identify additional articles. Studies were limited to adult humans (aged 18 years and above), from clinical or general populations. Exposures and study design of all types were also considered eligible. RESULTS: A systematic search identified 52 studies, which examined brain ageing in clinical and community dwelling adults (mean age between 21 to 78 years, ~ 37% were female). Most research came from studies of individuals diagnosed with schizophrenia or Alzheimer's disease, or healthy populations that were assessed cognitively. From these studies, psychiatric and neurologic diseases were most commonly associated with accelerated brain ageing, though not all studies drew the same conclusions. Evidence for all other exposures is nascent, and relatively inconsistent. Heterogenous methodologies, or methods of outcome ascertainment, were partly accountable. CONCLUSION: This systematic review summarised the current evidence for an association between genetic, lifestyle, health, or diseases and brain ageing. Overall there is good evidence to suggest schizophrenia and Alzheimer's disease are associated with accelerated brain ageing. Evidence for all other exposures was mixed or limited. This was mostly due to a lack of independent replication, and inconsistency across studies that were primarily cross sectional in nature. Future research efforts should focus on replicating current findings, using prospective datasets. TRIAL REGISTRATION: A copy of the review protocol can be accessed through PROSPERO, registration number CRD42020142817 .


Subject(s)
Brain , Neuroimaging , Adult , Aged , Aging , Brain/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Middle Aged , Prospective Studies , Young Adult
15.
Neuroscience ; 467: 218-236, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34087394

ABSTRACT

Traumatic brain injury (TBI) is a common but heterogeneous injury underpinned by numerous complex and interrelated pathophysiological mechanisms. An essential trace element, iron is abundant within the brain and involved in many fundamental neurobiological processes, including oxygen transportation, oxidative phosphorylation, myelin production and maintenance, as well as neurotransmitter synthesis and metabolism. Excessive levels of iron are neurotoxic and thus iron homeostasis is tightly regulated in the brain, however, many details about the mechanisms by which this is achieved are yet to be elucidated. A key mediator of oxidative stress, mitochondrial dysfunction and neuroinflammatory response, iron dysregulation is an important contributor to secondary injury in TBI. Advances in neuroimaging that leverage magnetic susceptibility properties have enabled increasingly comprehensive investigations into the distribution and behaviour of iron in the brain amongst healthy individuals as well as disease states such as TBI. Quantitative Susceptibility Mapping (QSM) is an advanced neuroimaging technique that promises quantitative estimation of local magnetic susceptibility at the voxel level. In this review, we provide an overview of brain iron and its homeostasis, describe recent advances enabling applications of QSM within the context of TBI and summarise the current state of the literature. Although limited, the emergent research suggests that QSM is a promising neuroimaging technique that can be used to investigate a host of pathophysiological changes that are associated with TBI.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Brain Mapping , Humans , Iron , Neuroimaging
17.
Cereb Cortex ; 31(6): 2855-2867, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33529320

ABSTRACT

Simultaneous [18F]-fluorodeoxyglucose positron emission tomography functional magnetic resonance imaging (FDG-PET/fMRI) provides the capacity to image 2 sources of energetic dynamics in the brain-glucose metabolism and the hemodynamic response. fMRI connectivity has been enormously useful for characterizing interactions between distributed brain networks in humans. Metabolic connectivity based on static FDG-PET has been proposed as a biomarker for neurological disease, but FDG-sPET cannot be used to estimate subject-level measures of "connectivity," only across-subject "covariance." Here, we applied high-temporal resolution constant infusion functional positron emission tomography (fPET) to measure subject-level metabolic connectivity simultaneously with fMRI connectivity. fPET metabolic connectivity was characterized by frontoparietal connectivity within and between hemispheres. fPET metabolic connectivity showed moderate similarity with fMRI primarily in superior cortex and frontoparietal regions. Significantly, fPET metabolic connectivity showed little similarity with FDG-sPET metabolic covariance, indicating that metabolic brain connectivity is a nonergodic process whereby individual brain connectivity cannot be inferred from group-level metabolic covariance. Our results highlight the complementary strengths of fPET and fMRI in measuring the intrinsic connectivity of the brain and open up the opportunity for novel fundamental studies of human brain connectivity as well as multimodality biomarkers of neurological diseases.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Positron-Emission Tomography/methods , Adolescent , Female , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Hemodynamics/physiology , Humans , Male , Multimodal Imaging/methods , Rest/physiology , Young Adult
18.
J Womens Health (Larchmt) ; 30(1): 36-44, 2021 01.
Article in English | MEDLINE | ID: mdl-32846107

ABSTRACT

Background: During pregnancy, a woman will attribute increased abdominal sensations to fetal movement. Surprisingly, many women report that they feel kick sensations long after the pregnancy; however, this experience has never been reported in the scientific literature. Materials and Methods: We used a qualitative approach to survey n = 197 women who had previously been pregnant. We calculated the number of women who had experienced phantom kicks after their first pregnancy, and explored subjective experiences of kick-like sensations in the post-partum period. Results: In this study, we show that almost 40% of women in our sample experienced phantom fetal kicks after their first pregnancy, up to 28 years (average 6.4 years) post-partum. Women described the phantom sensations as "convincing," "real kicks," or "flutters." Twenty-seven percent of women described the experience as nostalgic or comforting, and 25.7% reported felt confused or upset by the experience. Conclusions: Our results demonstrate that phantom kicks in the postpartum period are a widely experienced sensation, which may have implications for a woman's postpartum mental health. The mechanism behind the phantom kick phenomenon is unknown, but may be related to changes in the somatosensory homunculus or proprioception during pregnancy.


Subject(s)
Postpartum Period , Prenatal Care , Emotions , Female , Humans , Pregnancy , Qualitative Research
19.
Neuroimage ; 226: 117603, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33271271

ABSTRACT

Simultaneous magnetic resonance and positron emission tomography provides an opportunity to measure brain haemodynamics and metabolism in a single scan session, and to identify brain activations from multimodal measurements in response to external stimulation. However, there are few analysis methods available for jointly analysing the simultaneously acquired blood-oxygen-level dependant functional MRI (fMRI) and 18-F-fluorodeoxyglucose functional PET (fPET) datasets. In this work, we propose a new multimodality concatenated ICA (mcICA) method to identify joint fMRI-fPET brain activations in response to a visual stimulation task. The mcICA method produces a fused map from the multimodal datasets with equal contributions of information from both modalities, measured by entropy. We validated the method in silico, and applied it to an in vivo visual stimulation experiment. The mcICA method estimated the activated brain regions in the visual cortex modulated by both BOLD and FDG signals. The mcICA provides a fully data-driven analysis approach to analyse cerebral haemodynamic response and glucose uptake signals arising from exogenously induced neuronal activity.


Subject(s)
Brain/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Adult , Female , Humans , Male , Young Adult
20.
Cereb Cortex ; 31(2): 1270-1283, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33067999

ABSTRACT

The maternal brain undergoes structural and functional plasticity during pregnancy and the postpartum period. Little is known about functional plasticity outside caregiving-specific contexts and whether changes persist across the lifespan. Structural neuroimaging studies suggest that parenthood may confer a protective effect against the aging process; however, it is unknown whether parenthood is associated with functional brain differences in late life. We examined the relationship between resting-state functional connectivity and number of children parented in 220 healthy older females (73.82 ± 3.53 years) and 252 healthy older males (73.95 ± 3.50 years). We compared the patterns of resting-state functional connectivity with 3 different models of age-related functional change to assess whether these effects may be functionally neuroprotective for the aging human parental brain. No relationship between functional connectivity and number of children was obtained for males. For females, we found widespread decreasing functional connectivity with increasing number of children parented, with increased segregation between networks, decreased connectivity between hemispheres, and decreased connectivity between anterior and posterior regions. The patterns of functional connectivity related to the number of children an older woman has parented were in the opposite direction to those usually associated with age-related cognitive decline, suggesting that motherhood may be beneficial for brain function in late life.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Maternal Behavior/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Aged , Aging/physiology , Cohort Studies , Female , Humans , Male , Mental Status and Dementia Tests , Mothers , Neuroprotection/physiology , Parents , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...