Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(48): 19519-19531, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38000445

ABSTRACT

State inventories indicate that dairy operations account for nearly half of California's methane budget. Recent analyses suggest, however, that these emissions may be underestimated, complicating efforts to develop emission reduction strategies. Here, we report estimates of dairy methane emissions in the southern San Joaquin Valley (SJV) of California in June 2021 using airborne flux measurements. We find average dairy methane fluxes of 512 ± 178 mg m-2 h-1 from a region of 300+ dairies near Visalia, CA using a combination of eddy covariance and mass balance-based techniques, corresponding to 118 ± 41 kg dairy-1 h-1. These values estimated during our June campaign are 39 ± 48% larger than annual average estimates from the recently developed VISTA-CA inventory. We observed notable increases in emissions with temperature. Our estimates align well with inventory predictions when parametrizations for the temperature dependence of emissions are applied. Our measurements further demonstrate that the VISTA-CA emission inventory is considerably more accurate than the EPA GHG-I inventory in this region. Source apportionment analyses confirm that dairy operations produce the majority of methane emissions in the southern SJV (∼65%). Fugitive oil and gas (O&G) sources account for the remaining ∼35%. Our results support the accuracy of the process-based models used to develop dairy emission inventories and highlight the need for additional investigation of the meteorological dependence of these emissions.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Methane/analysis , Environment , Natural Gas/analysis , California
2.
Article in English | MEDLINE | ID: mdl-37711680

ABSTRACT

CeO2 and CuO nanoparticles (NPs) are used as additives in petrodiesel to enhance engine performance leading to reduced diesel combustion emissions. Despite their benefits, the additive application poses human health concerns by releasing inhalable NPs into the ambient air. In this study, a bioinspired lung cell exposure system, Dosimetric Aerosol in Vitro Inhalation Device (DAVID), was employed for evaluating the toxicity of aerosolized CeO2 and CuO NPs with a short duration of exposure (≤10 min vs. hours in other systems) and without exerting toxicity from non-NP factors. Human epithelial A549 lung cells were cultured and maintained within DAVID at the air-liquid interface (ALI), onto which aerosolized NPs were deposited, and experiments in submerged cells were used for comparison. Exposure of the cells to the CeO2 NPs did not result in detectable IL-8 release, nor did it produce a significant reduction in cell viability based on lactate dehydrogenase (LDH) assay, with a marginal decrease (10%) at the dose of 388 µg/cm2 (273 cm2/cm2). In contrast, exposure to CuO NPs resulted in a concentration dependent reduction in LDH release based on LDH leakage, with 38% reduction in viability at the highest dose of 52 µg/cm2 (28.3 cm2/cm2). Cells exposed to CuO NPs resulted in a dose dependent cellular membrane toxicity and expressed IL-8 secretion at a global dose five times lower than cells exposed under submerged conditions. However, when comparing the ALI results at the local cellular dose of CuO NPs to the submerged results, the IL-8 secretion was similar. In this study, we demonstrated DAVID as a new exposure tool that helps evaluate aerosol toxicity in simulated lung environment. Our results also highlight the necessity in choosing the right assay endpoints for the given exposure scenario, e.g., LDH for ALI and Deep Blue for submerged conditions for cell viability.

3.
Geophys Res Lett ; 48(3): e2020GL091699, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33612880

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic led to a widespread reduction in aerosol emissions. Using satellite observations and climate model simulations, we study the underlying mechanisms of the large decreases in solar clear-sky reflection (3.8 W m-2 or 7%) and aerosol optical depth (0.16 W m-2 or 32%) observed over the East Asian Marginal Seas in March 2020. By separating the impacts from meteorology and emissions in the model simulations, we find that about one-third of the clear-sky anomalies can be attributed to pandemic-related emission reductions, and the rest to weather variability and long-term emission trends. The model is skillful at reproducing the observed interannual variations in solar all-sky reflection, but no COVID-19 signal is discerned. The current observational and modeling capabilities will be critical for monitoring, understanding, and predicting the radiative forcing and climate impacts of the ongoing crisis.

4.
J Hazard Mater ; 395: 122687, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32330784

ABSTRACT

In assessing the biological impact of airborne particles in vitro, air-liquid interface (ALI) exposure chambers are increasingly preferred over classical submerged exposure techniques, albeit historically limited by their inability to deliver sufficient aerosolized dose. A novel ALI system, the Dosimetric Aerosol in Vitro Inhalation Device (DAVID), bioinspired by the human respiratory system, uses water-based condensation for highly efficient aerosol deposition to ALI cell culture. Here, welding fumes (well-studied and inherently toxic ultrafine particles) were used to assess the ability of DAVID to generate toxicological responses between differing welding conditions. After fume exposure, ALI-cultured cells showed reductions in viability that were both distinct between welding conditions and linearly dose-dependent with respect to exposure time; comparatively, submerged cell cultures ran in parallel did not show these trends across exposure levels. DAVID delivers a substantial dose in minutes (> 100 µg/cm2), making it preferable over previous ALI systems, which require hours of exposure to deliver sufficient dose, and over submerged techniques, which lack comparable physiological relevance. DAVID has the potential to provide the most accurate assessment of in vitro toxicity yet from the perspectives of physiological relevance to the human respiratory system and efficiency in collecting ultrafine aerosol common to hazardous exposure conditions.


Subject(s)
Air Pollutants, Occupational , Welding , Aerosols/toxicity , Air Pollutants, Occupational/analysis , Air Pollutants, Occupational/toxicity , Gases , Humans , Inhalation Exposure , Respiratory System
5.
Aerosol Sci Technol ; 53(12): 1415-1428, 2019.
Article in English | MEDLINE | ID: mdl-33033421

ABSTRACT

A first-of-its-kind aerosol exposure device for toxicity testing, referred to as the Dosimetric Aerosol in Vitro Inhalation Device (DAVID), was evaluated for its ability to deliver airborne nanoparticles to lung cells grown as air-liquid interface (ALI) cultures. For inhalation studies, ALI lung cell cultures exposed to airborne nanoparticles have more relevancy than the same cells exposed in submerged culture because ALI culture better represents the respiratory physiology and consequently more closely reflect cellular response to aerosol exposure. In DAVID, water condensation grows particles as small as 5 nm to droplets sized > 5 µm for inertial deposition at low flow rates. The application of DAVID for nanotoxicity analysis was evaluated by measuring the amount and variability in the deposition of uranine nanoparticles and then assessing the viability of ALI cell cultures exposed to clean-air under the same operational conditions. The results showed a low coefficient of variation, < 0.25, at most conditions, and low variability in deposition between the exposure wells, trials, and operational flow rates. At an operational flow rate of 4 LPM, no significant changes in cell viability were observed, and minimal effects observed at 6 LPM. The reliable and gentle deposition mechanism of DAVID makes it advantageous for nanoparticle exposure.

SELECTION OF CITATIONS
SEARCH DETAIL
...