Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 06 20.
Article in English | MEDLINE | ID: mdl-37338980

ABSTRACT

Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans homeodomain-interacting protein kinase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 induction overlaps with key longevity transcription factors, which suggests that hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and γ-aminobutyric acid (GABA)ergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity, which requires mxl-2 (MLX), hlh-30 (TFEB), and daf-16 (FOXO). Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.


Proteins are essential for nearly every cellular process to sustain a healthy organism. A complex network of pathways and signalling molecules regulates the proteins so that they work correctly in a process known as proteostasis. As the body ages, this network can become damaged, which leads to the production of faulty proteins. Many proteins end up being misfolded ­ in other words, they are misshapen on the molecular level, which can be toxic for the cell. A build-up of such misfolded proteins is implicated in several neurological conditions, including Alzheimer's, Parkinson's and Huntington's disease. Cells have various ways to detect and respond to internal stressors, such as tissue or organ damage. For example, specific proteins in the nervous system can raise a 'central' alert when damage is detected, which then primes and coordinates the body's systems to respond in the peripheral cells and tissues. But exactly how this happens is still unclear. To find out more about the central coordination of stress responses, Lazaro-Pena et al. studied one such sensor protein, called HPK-1, in the roundworm C. elegans. They first overexpressed the protein in various tissues. This revealed that only when HPK-1 was overactive in nerve tissue, it protected proteins and prolonged the lifespan of the worms. An increased amount of HPK-1 improved the health span of the worms and older worms also moved better. However, genetically manipulated worms lacking HPK-1 in their nerve cells showed a faster decline in nervous system health as they aged, which could be reversed once HPK-1 was activated again. Lazaro-Pena et al. then measured the amount of HPK-1 in worms at different stages of their life. This showed that as the worms aged, the amount of HPK-1 increased in the nerve cells. The nerve cells in which HPK-1 levels increased overlapped with an increased expression of proteins associated with longevity. Moreover, when HPK-1 was overexpressed, it stimulated the release of other cell signals, which then triggered protective responses to prevent the misfolding and aggregation of proteins and to help degrade damaged proteins. This study shows for the first time that HPK-1 appears to play a protective role during normal ageing and that it may act as a key switch to stimulate other protective mechanisms. These findings may give rise to new insights into how the nervous system can coordinate many different stress responses, and ultimately delay ageing throughout the whole body.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Longevity/genetics , Caenorhabditis elegans/physiology , Protein Kinases/metabolism , Homeodomain Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation , Aging/genetics , Homeostasis , GABAergic Neurons/metabolism
2.
bioRxiv ; 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-36711523

ABSTRACT

Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 induction overlaps with key longevity transcription factors, which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity, which requires mxl-2 (MLX), hlh-30 (TFEB), and daf-16 (FOXO). Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.

3.
Front Aging ; 3: 861686, 2022.
Article in English | MEDLINE | ID: mdl-35874276

ABSTRACT

Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.

SELECTION OF CITATIONS
SEARCH DETAIL
...