Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 270: 116179, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33348142

ABSTRACT

The developing nervous system is highly vulnerable to environmental toxicants especially pesticides. Glyphosate pesticide induces neurotoxicity both in humans and rodents, but so far only when exposed to higher concentrations. A few studies, however, have also reported the risk of general toxicity of glyphosate at concentrations comparable to allowable limits set up by environmental protection authorities. In vitro data regarding glyphosate neurotoxicity at concentrations comparable to maximum permissible concentrations in drinking water is lacking. In the present study, we established an in vitro assay based upon neural stem cells (NSCs) from the subventricular zone of the postnatal mouse to decipher the effects of two maximum permissible concentrations of glyphosate in drinking water on the basic neurogenesis processes. Our results demonstrated that maximum permissible concentrations of glyphosate recognized by environmental protection authorities significantly reduced the cell migration and differentiation of NSCs as demonstrated by the downregulation of the expression levels of the neuronal ß-tubulin III and the astrocytic S100B genes. The expression of the cytoprotective gene CYP1A1 was downregulated whilst the expression of oxidative stresses indicator gene SOD1 was upregulated. The concentration comparable to non-toxic human plasma concentration significantly induced cytotoxicity and activated Ca2+ signalling in the differentiated culture. Our findings demonstrated that the permissible concentrations of glyphosate in drinking water recognized by environmental protection authorities are capable of inducing neurotoxicity in the developing nervous system.


Subject(s)
Drinking Water , Herbicides , Neural Stem Cells , Animals , Drinking Water/analysis , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/analysis , Lateral Ventricles/chemistry , Mice , Neural Stem Cells/chemistry , Glyphosate
2.
Radiat Res ; 169(6): 639-48, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18494542

ABSTRACT

DNA double-strand breaks (DSBs) are the most severe lesions induced by ionizing radiation, and unrejoined or misrejoined DSBs can lead to cell lethality, mutations and the initiation of tumorigenesis. We have investigated X-ray- and alpha-particle-induced mutations that inactivate the hypoxanthine guanine phosphoribosyltransferase (HPRT) gene in human bladder carcinoma cells and in hTERT-immortalized human fibroblasts. Fifty to 80% of the mutants analyzed exhibited partial or total deletions of the 9 exons of the HPRT locus. The remaining mutants retained unaltered PCR products of all 9 exons but often displayed a failure to amplify the HPRT cDNA. Hybridization analysis of a 2-Mbp NotI fragment spanning the HPRT gene with a probe 200 kbp distal to the HPRT locus indicated altered fragment sizes in most of the mutants with a wild-type PCR pattern. These mutants likely contain breakpoints for genomic rearrangements in the intronic sequences of the HPRT gene that allow the amplification of the exons but prevent HPRT cDNA amplification. Additionally, mutants exhibiting partial and total deletions of the HPRT exons also frequently displayed altered NotI fragments. Interestingly, all mutations were very rarely associated with interchromosomal exchanges analyzed by FISH. Collectively, our data suggest that intrachromosomal genomic rearrangements on the Mbp scale represent the prevailing type of radiation-induced HPRT mutations.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Hypoxanthine Phosphoribosyltransferase/genetics , Mutation , Alpha Particles , Cell Line, Tumor , Chromosome Mapping , DNA Primers/chemistry , DNA, Complementary/metabolism , Dose-Response Relationship, Radiation , Fibroblasts/metabolism , Humans , In Situ Hybridization, Fluorescence , Nucleic Acid Hybridization , X-Rays
3.
Inorg Chem ; 35(13): 3967-3974, 1996 Jun 19.
Article in English | MEDLINE | ID: mdl-11666591

ABSTRACT

The EPR single-crystal and powder spectra of mixed crystals of (3-chloroanilinium)(8)(Cd(1-x)Cu(x)Cl(6))Cl(4) are measured as a function of temperature and x and analyzed with respect to the geometry and bonding properties of the CuCl(6) polyhedra. These undergo strong distortions due to vibronic Jahn-Teller coupling, with the resulting tetragonal elongation being superimposed by a considerable orthorhombic symmetry component induced by a host site strain acting as a compression along the crystallographic a axis. This strain becomes apparent in the cadmium compound (x = 0), whose crystal structure is also reported [a = 8.701(2) Å, b = 13.975(2) Å, c = 14.173(2) Å, alpha = 81.62(1) degrees, beta = 72.92(1) degrees, gamma = 77.57(1) degrees, triclinic P&onemacr;, Z = 1]. A calculation of the ground state potential surface and its vibronic structure nicely reproduces the g values, Cu-Cl spacings, and ligand field data. At high copper concentrations (including x = 1), the CuCl(6) polyhedra are coupled elastically, with the long axes of neighboring polyhedra having perpendicular orientations. The elastic correlation presumably is not of the long-range antiferrodistortive type, however. Above about 55 K, the angular Jahn-Teller distortion component becomes dynamically averaged within the time scale of the EPR experiment, leading to local tetragonally compressed CuCl(6) octahedra.

SELECTION OF CITATIONS
SEARCH DETAIL
...