Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 161: 549-559, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31233967

ABSTRACT

Pesticides are emerging contaminants frequently detected in the aquatic environment. In this work, a novel approach combining activated carbon adsorption, oxygen plasma treatment and ozonation was studied for the removal of the persistent chlorinated pesticide alachlor. A comparison was made between the removal efficiency and energy consumption for two different reactor operation modes: batch-recirculation and single-pass mode. The kinetics study revealed that the insufficient removal of alachlor by adsorption was significantly improved in terms of degradation efficiency and energy consumption when combined with the plasma treatment. The best efficiency (ca. 80% removal with an energy cost of 19.4 kWh m-³) was found for the single-pass operational mode of the reactor. In the batch-recirculating process, a complete elimination of alachlor by plasma treatment was observed after 30 min of treatment. Analysis of the reactive species induced by plasma in aqueous solutions showed that the decomposition of alachlor mainly occurred through a radical oxidation mechanism, with a minor contribution of long-living oxidants (O3, H2O2). Investigation of the alachlor oxidation pathways revealed six different oxidation mechanisms, including the loss of aromaticity which was never before reported for plasma-assisted degradation of aromatic pesticides. It was revealed that the removal rate and energy cost could be further improved with more than 50% by additional O3 gas bubbling in the solution reservoir.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Acetamides , Hydrogen Peroxide , Oxidation-Reduction , Water
2.
Chemosphere ; 234: 715-724, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31234088

ABSTRACT

Over the last years, there has been a growing interest in the use of Advanced Oxidation Processes (AOPs) for the elimination of micropollutants. This work attempts to compare the efficiency of conventional UV, O3 and H2O2 based AOPs with a relatively new AOP based on plasma-ozonation, in terms of removal and energy efficiency. The experimental study is performed in a synthetic water matrix spiked with four different micropollutants: atrazine (ATZ), alachlor (ALA), bisphenol A (BPA) and 1,7-α-ethinylestradiol (EE2). For the different processes examined in this study, O3 - based AOPs are more effective compared to UV based techniques in terms of energy efficiency. Although the energy efficiency of plasma-ozonation falls between the energy cost of O3 and UV-based AOPs, the removal kinetics generally proceed faster compared to other AOPs, achieving complete elimination (>99.8% removal) of the target compounds within 20 min of treatment. Moreover, the results suggest that improvement in the mass-transfer in the plasma-ozonation setup permits to further decrease the energy cost of this process up to electrical energy per order (EE/O) values between 2.54 and 0.124 kWh m-³, which is already closer to the energy efficiency of ozonation (EE/O = 0.73-0.084 kWh m-³).


Subject(s)
Ozone/chemistry , Plasma Gases/chemistry , Ultraviolet Rays , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/economics , Water Purification/methods , Hydrogen Peroxide/chemistry , Hydroxyl Radical , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
3.
Environ Technol ; 40(28): 3773-3782, 2019 Dec.
Article in English | MEDLINE | ID: mdl-29923788

ABSTRACT

The degradation of micropollutants (MPs), including pesticides, herbicides, pharmaceuticals and endocrine disrupting compounds, by ozone-based advanced oxidation techniques (AOP) was investigated in this study. The effect of different factors, such as ozone concentration, hydrogen peroxide concentration and initial pH, on the removal rate was studied in detail. The combination of UV with ozone/ H2O2 increased the MPs degradation. For example, atrazine removal increased from 12.6% to 66.9%. Increasing the concentration of ozone and H2O2 can enhance the degradation efficiency of MPs, while excess H2O2 plays a role as a scavenger for •OH. In addition, the optimizing conditions of degradation of MPs by an ozone-based AOP were investigated in this study. The optimal dosages of ozone for atrazine (ATZ), alachlor (ALA), carbamazepine (CBZ), 17-α-ethinylestradiol (EE2) and pentachlorophenol (PCP), were in the range of 0.6-0.75, while for ATZ a much higher dosage (5.4 mg/l) is needed. The optimal dosages of H2O2 concentration were at 0.75, 0.2, 0.47, 0.75 and 0.63 mM, and pH were at 10, 10, 7, 10 and 10, and reaction time at 38.5, 33.5 43, 6 and 6 min, respectively. Ozone-based AOP and in particular combination of UV with ozone and H2O2 is efficient to degrade atrazine, alachlor, carbamazepine, 17-α-ethinylestradiol and pentachlorophenol, and is attractive for future application of real wastewater treatment.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Hydrogen Peroxide , Oxidation-Reduction , Ultraviolet Rays , Wastewater
4.
J Hazard Mater ; 362: 238-245, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30240998

ABSTRACT

The emergence of micropollutants into our aquatic resources is regarded as an issue of increasing environmental concern. To protect the aquatic environment against further contamination with micropollutants, treatment with advanced oxidation processes (AOPs) is put forward as a promising technique. In this work, an innovative AOP based on electrical discharges in a continuous-flow pulsed dielectric barrier discharge (DBD) reactor with falling water film over activated carbon textile is examined for its potential application in water treatment. The effect of various operational parameters including feed gas type, gas flow rate, water flow rate and power on removal and energy efficiency has been studied. To this end, a synthetic micropollutant mixture containing five pesticides (atrazine, alachlor, diuron, dichlorvos and pentachlorophenol), two pharmaceuticals (carbamazepine and 1,7-α-ethinylestradiol), and 1 plasticizer (bisphenol A) is used. While working under optimal conditions, energy consumption was situated in the range 2.42-4.25 kW h/m³, which is about two times lower than the economically viable energy cost of AOPs (5 kW h/m³). Hence, the application of non-thermal plasma could be regarded as a promising alternative AOP for (industrial) wastewater remediation.

5.
J Hazard Mater ; 354: 180-190, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29751174

ABSTRACT

A falling film dielectric barrier discharge (DBD) plasma reactor combined with adsorption on activated carbon textile material was optimized to minimize the formation of hazardous oxidation by-products from the treatment of persistent pesticides (alachlor, diuron and isoproturon) in water. The formation of by-products and the reaction mechanism was investigated by HPLC-TOF-MS. The maximum concentration of each by-product was at least two orders of magnitude below the initial pesticide concentration, during the first 10 min of treatment. After 30 min of treatment, the individual by-product concentrations had decreased to values of at least three orders of magnitude below the initial pesticide concentration. The proposed oxidation pathways revealed five main oxidation steps: dechlorination, dealkylation, hydroxylation, addition of a double-bonded oxygen and nitrification. The latter is one of the main oxidation mechanisms of diuron and isoproturon for air plasma treatment. To our knowledge, this is the first time that the formation of nitrificated intermediates is reported for the plasma treatment of non-phenolic compounds.

6.
Water Res ; 116: 1-12, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28292675

ABSTRACT

Bio-recalcitrant micropollutants are often insufficiently removed by modern wastewater treatment plants to meet the future demands worldwide. Therefore, several advanced oxidation techniques, including cold plasma technology, are being investigated as effective complementary water treatment methods. In order to permit industrial implementation, energy demand of these techniques needs to be minimized. To this end, we have developed an electrical discharge reactor where water treatment by dielectric barrier discharge (DBD) is combined with adsorption on activated carbon textile and additional ozonation. The reactor consists of a DBD plasma chamber, including the adsorptive textile, and an ozonation chamber, where the DBD generated plasma gas is bubbled. In the present paper, this reactor is further characterized and optimized in terms of its energy efficiency for removal of the five pesticides α-HCH, pentachlorobenzene, alachlor, diuron and isoproturon, with initial concentrations ranging between 22 and 430 µg/L. Energy efficiency of the reactor is found to increase significantly when initial micropollutant concentration is decreased, when duty cycle is decreased and when oxygen is used as feed gas as compared to air and argon. Overall reactor performance is improved as well by making it work in single-pass operation, where water is flowing through the system only once. The results are explained with insights found in literature and practical implications are discussed. For the used operational conditions and settings, α-HCH is the most persistent pesticide in the reactor, with a minimal achieved electrical energy per order of 8 kWh/m3, while a most efficient removal of 3 kWh/m3 or lower was reached for the four other pesticides.


Subject(s)
Waste Disposal, Fluid , Water , Pesticides , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL
...