Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
JMIR Res Protoc ; 13: e50542, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990638

ABSTRACT

BACKGROUND: Women of reproductive age experience cyclical variation in the female sex steroid hormones 17ß-estradiol and progesterone during the menstrual cycle that is attenuated by some hormonal contraceptives. Estrogens perform a primary function in sexual development and reproduction but have nonreproductive effects on bone, muscle, and sinew tissues (ie, ligaments and tendons), which may influence injury risk and physical performance. OBJECTIVE: The purpose of the study is to understand the effect of the menstrual cycle and hormonal contraceptive use on bone and calcium metabolism, and musculoskeletal health and performance. METHODS: A total of 5 cohorts of physically active women (aged 18-40 years) will be recruited to participate: eumenorrheic, nonhormonal contraceptive users (n=20); combined oral contraceptive pill (COCP) users (n=20); hormonal implant users (n=20); hormonal intrauterine system users (n=20); and hormonal injection users (n=20). Participants must have been using the COCP and implant for at least 1 year and the intrauterine system and injection for at least 2 years. First-void urine samples and fasted blood samples will be collected for biochemical analysis of calcium and bone metabolism, hormones, and metabolic markers. Knee extensor and flexor strength will be measured using an isometric dynamometer, and lower limb tendon and stiffness, tone, and elasticity will be measured using a Myoton device. Functional movement will be assessed using a single-leg drop to assess the frontal plane projection angle and the qualitative assessment of single leg loading. Bone density and macro- and microstructure will be measured using ultrasound, dual-energy x-ray absorptiometry, and high-resolution peripheral quantitative computed tomography. Skeletal material properties will be estimated from reference point indentation, performed on the flat surface of the medial tibia diaphysis. Body composition will be assessed by dual-energy x-ray absorptiometry. The differences in outcome measures between the hormonal contraceptive groups will be analyzed in a one-way between-group analysis of covariance. Within the eumenorrheic group, the influence of the menstrual cycle on outcome measures will be assessed using a linear mixed effects model. Within the COCP group, differences across 2 time points will be analyzed using the paired-samples 2-tailed t test. RESULTS: The research was funded in January 2020, and data collection started in January 2022, with a projected data collection completion date of August 2024. The number of participants who have consented at the point of manuscript submission is 66. It is expected that all data analysis will be completed and results published by the end of 2024. CONCLUSIONS: Understanding the effects of the menstrual cycle and hormonal contraception on musculoskeletal health and performance will inform contraceptive choices for physically active women to manage injury risk. TRIAL REGISTRATION: ClinicalTrials.gov NCT05587920; https://classic.clinicaltrials.gov/ct2/show/NCT05587920. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50542.


Subject(s)
Menstrual Cycle , Humans , Female , Adult , Young Adult , Cross-Sectional Studies , Prospective Studies , Menstrual Cycle/drug effects , Adolescent , Hormonal Contraception/adverse effects , Cohort Studies , Bone Density/drug effects
2.
Eur J Sport Sci ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967991

ABSTRACT

Challenges for some women meeting the physical employment standards (PES) for ground close combat (GCC) roles stem from physical fitness and anthropometric characteristics. The purpose of this study was to identify the modifiable and nonmodifiable characteristics predictive of passing GCC-based PES tasks and determine the modifiable characteristics suitable to overcome nonmodifiable limitations. 107 adults (46 women) underwent multiday testing assessing regional and total lean mass (LM), percent body fat (BF%), aerobic capacity (V̇O2peak), strength, power, and PES performance. Predictors with p-value <0.200 were included in stepwise logistic regression analysis or binary logistic regression when outcomes among sexes were insufficient. Relative and absolute arm LM (OR: 4.617-8.522, p < 0.05), leg LM (OR: 2.463, p < 0.05), and upper body power (OR: 2.061, p < 0.05) predicted medicine ball chest throw success. Relative and absolute arm LM (OR: 3.734-11.694, p < 0.05), absolute trunk LM (OR: 2.576, p < 0.05), and leg LM (OR: 2.088, p < 0.05) predicted casualty drag success. Upper body power (OR: 3.910, p < 0.05), absolute trunk LM (OR: 2.387, p < 0.05), leg LM (OR: 2.290, p < 0.05), and total LM (OR: 1.830, p < 0.05) predicted maximum single lift success. Relative and absolute arm LM (OR: 3.488-7.377, p < 0.05), leg LM (OR: 1.965, p < 0.05), and upper body power (OR: 1.957, p < 0.05) predicted water can carry success. %BF (OR: 0.814, p = 0.007), V̇O2peak (OR: 1.160, p = 0.031), and lower body strength (OR: 1.059, p < 0.001) predicted repeated lift and carry success. V̇O2peak (OR: 1.540, p < 0.001) predicted 2-km ruck march success. Modifiable characteristics were the strongest predictors for GCC-based PES task success to warrant their improvement for enhancing PES performance for women.

3.
Physiol Rep ; 12(9): e16016, 2024 May.
Article in English | MEDLINE | ID: mdl-38697940

ABSTRACT

Concurrent resistance and endurance exercise training (CET) has well-studied benefits; however, inherent hormonal and genetic differences alter adaptive responses to exercise between sexes. Extracellular vesicles (EVs) are factors that contribute to adaptive signaling. Our purpose was to test if EV characteristics differ between men and women following CET. 18 young healthy participants underwent 12-weeks of CET. Prior to and following CET, subjects performed an acute bout of heavy resistance exercise (AHRET) consisting of 6 × 10 back squats at 75% 1RM. At rest and following AHRET, EVs were isolated from plasma and characteristics and miRNA contents were analyzed. AHRET elevated EV abundance in trained men only (+51%) and AHRET-induced changes were observed for muscle-derived EVs and microvesicles. There were considerable sex-specific effects of CET on EV miRNAs, highlighted by larger variation following the 12-week program in men compared to women at rest. Pathway analysis based on differentially expressed EV miRNAs predicted that AHRET and 12 weeks of CET in men positively regulates hypertrophy and growth pathways more so than in women. This report highlights sex-based differences in the EV response to resistance and concurrent exercise training and suggests that EVs may be important adaptive signaling factors altered by exercise training.


Subject(s)
Extracellular Vesicles , MicroRNAs , Resistance Training , Humans , Female , Male , Extracellular Vesicles/metabolism , Resistance Training/methods , Adult , MicroRNAs/blood , MicroRNAs/metabolism , Young Adult , Exercise/physiology , Sex Characteristics , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Endurance Training/methods , Sex Factors
4.
Scand J Med Sci Sports ; 34(4): e14610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38534053

ABSTRACT

The aim was to use a robust statistical approach to examine whether physical fitness at entry influences performance changes between men and women undertaking British Army basic training (BT). Performance of 2 km run, seated medicine ball throw (MBT) and isometric mid-thigh pull (MTP) were assessed at entry and completion of Standard Entry (SE), Junior Entry-Short (JE-Short), and Junior Entry-Long (JE-Long) training for 2350 (272 women) recruits. Performance change was analyzed with entry performance as a covariate (ANCOVA), with an additional interaction term allowing different slopes for courses and genders (p < 0.05). Overall, BT courses saw average improvements in 2 km run performance (SE: -6.8% [-0.62 min], JE-Short: -4.6% [-0.43 min], JE-Long: -7.7% [-0.70 min]; all p < 0.001) and MBT (1.0-8.8% [0.04-0.34 m]; all p < 0.05) and MTP (4.5-26.9% [6.5-28.8 kg]; all p < 0.001). Regression models indicate an expected form of "regression to the mean" whereby test performance change was negatively associated with entry fitness in each course (those with low baseline fitness exhibit larger training improvements; all interaction effects: p < 0.001, η p 2 $$ {\eta}_{\mathrm{p}}^2 $$ > 0.006), particularly for women. However, when matched for entry fitness, men displayed considerable improvements in all tests, relative to women. Training courses were effective in developing recruit physical fitness, whereby the level of improvement is, in large part, dependent on entry fitness. Factors including age, physical maturity, course length, and physical training, could also contribute to the variability in training response between genders and should be considered when analyzing and/or developing physical fitness in these cohorts for future success of military job-task performance.


Subject(s)
Military Personnel , Female , Humans , Male , Exercise , Exercise Test , Physical Fitness/physiology , Physical Functional Performance , Task Performance and Analysis
5.
Physiol Rep ; 12(6): e15953, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38490811

ABSTRACT

This study compared the structural and cellular skeletal muscle factors underpinning adaptations in maximal strength, power, aerobic capacity, and lean body mass to a 12-week concurrent resistance and interval training program in men and women. Recreationally active women and men completed three training sessions per week consisting of high-intensity, low-volume resistance training followed by interval training performed using a variety upper and lower body exercises representative of military occupational tasks. Pre- and post-training vastus lateralis muscle biopsies were analyzed for changes in muscle fiber type, cross-sectional area, capillarization, and mitochondrial biogenesis marker content. Changes in maximal strength, aerobic capacity, and lean body mass (LBM) were also assessed. Training elicited hypertrophy of type I (12.9%; p = 0.016) and type IIa (12.7%; p = 0.007) muscle fibers in men only. In both sexes, training decreased type IIx fiber expression (1.9%; p = 0.046) and increased total PGC-1α (29.7%, p < 0.001) and citrate synthase (11.0%; p < 0.014) content, but had no effect on COX IV content or muscle capillarization. In both sexes, training increased maximal strength and LBM but not aerobic capacity. The concurrent training program was effective at increasing strength and LBM but not at improving aerobic capacity or skeletal muscle adaptations underpinning aerobic performance.


Subject(s)
Muscle, Skeletal , Resistance Training , Male , Humans , Female , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Quadriceps Muscle , Exercise/physiology , Exercise Therapy , Muscle Strength
6.
Med Sci Sports Exerc ; 56(7): 1225-1232, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38377006

ABSTRACT

BACKGROUND: Resistance training confers numerous health benefits that are mediated in part by circulating factors. Toward an enhanced molecular understanding, there is growing interest in a class of signaling biomarkers called extracellular vesicles (EV). EVs support physiological adaptations to exercise by transporting their cargo (e.g., microRNA (miRNA)) to target cells. Previous studies of changes in EV cargo have focused on aerobic exercise, with limited data examining the effects of resistance exercise. We examined the effect of acute resistance exercise on circulating EV miRNAs and their predicted target pathways. METHODS: Ten participants (5 men; age, 26.9 ± 5.5 yr; height, 173.4 ± 10.5 cm; body mass, 74.0 ± 11.1 kg; body fat, 25.7% ± 11.6%) completed an acute heavy resistance exercise test (AHRET) consisting of six sets of 10 repetitions of back squats using 75% one-repetition maximum. Pre-/post-AHRET, EVs were isolated from plasma using size exclusion chromatography, and RNA sequencing was performed. Differentially expressed miRNAs between pre- and post-AHRET EVs were analyzed using Ingenuity Pathway Analysis to predict target messenger RNAs and their target biological pathways. RESULTS: Overall, 34 miRNAs were altered by AHRET ( P < 0.05), targeting 4895 mRNAs, with enrichment of 175 canonical pathways ( P < 0.01), including 12 related to growth/metabolism (p53, IGF-I, STAT3, PPAR, JAK/STAT, growth hormone, WNT/ß-catenin, ERK/MAPK, AMPK, mTOR, and PI3K/AKT) and 8 to inflammation signaling (TGF-ß, IL-8, IL-7, IL-3, IL-6, IL-2, IL-17, IL-10). CONCLUSIONS: Acute resistance exercise alters EV miRNAs targeting pathways involved in growth, metabolism, and immune function. Circulating EVs may serve as significant adaptive signaling molecules influenced by exercise training.


Subject(s)
Extracellular Vesicles , MicroRNAs , Resistance Training , Humans , Male , Extracellular Vesicles/metabolism , Adult , Prospective Studies , Female , MicroRNAs/blood , MicroRNAs/metabolism , Young Adult , Signal Transduction , Circulating MicroRNA/blood
7.
J Appl Physiol (1985) ; 136(4): 938-948, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38385180

ABSTRACT

This study investigated sex differences in energy balance, body composition, and metabolic and endocrine markers during prolonged military training. Twenty-three trainees (14 women) completed 44-wk military training (three terms of 14 wk with 2-wk adventurous training). Dietary intake and total energy expenditure were measured over 10 days during each term by weighed food and doubly labeled water. Body composition was measured by dual-energy X-ray absorptiometry (DXA) at baseline and at the end of each term. Circulating metabolic and endocrine markers were measured at baseline and at the end of terms 2 and 3. Absolute energy intake and total energy expenditure were higher, and energy balance was lower, for men than women (P ≤ 0.008). Absolute energy intake and balance were lower, and total energy expenditure was higher, during term 2 than terms 1 and 3 (P < 0.001). Lean mass did not change with training (P = 0.081). Fat mass and body fat increased from term 1 to terms 2 and 3 (P ≤ 0.045). Leptin increased from baseline to terms 2 and 3 in women (P ≤ 0.002) but not in men (P ≥ 0.251). Testosterone and free androgen index increased from baseline to term 3 (P ≤ 0.018). Free thyroxine (T4) decreased and thyroid-stimulating hormone (TSH) increased from baseline to term 2 and term 3 (P ≤ 0.031). Cortisol decreased from baseline to term 3 (P = 0.030). IGF-I and total triiodothyronine (T3) did not change with training (P ≥ 0.148). Men experienced greater energy deficits than women during military training due to higher total energy expenditure.NEW & NOTEWORTHY Energy deficits are common in military training and can result in endocrine and metabolic disturbances. This study provides first investigation of sex differences in energy balance, body composition, and endocrine and metabolic markers in response to prolonged and arduous military training. Men experienced greater energy deficits than women due to higher energy expenditure, which was not compensated for by increased energy intake. These energy deficits were not associated with decreases in fat or lean mass or metabolic or endocrine function.


Subject(s)
Military Personnel , Humans , Female , Male , Sex Characteristics , Body Composition , Adipose Tissue/metabolism , Energy Intake , Energy Metabolism
8.
Physiol Rep ; 12(3): e15906, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38296351

ABSTRACT

Weight-bearing physical activity can stimulate bone adaptation. This investigation explored the effect of an acute bout of resistance exercise before and after resistance+interval training on circulating biomarkers of bone metabolism and muscle-bone crosstalk. Healthy young male and female participants (n = 21 male, 28 ± 4 years; n = 17 female, 27 ± 5 years) performed a 6 × 10 squat test (75% 1RM) before and after a 12-week resistance+interval training program. Before and after completion of the training program, blood samples were collected at rest, immediately postexercise, and 2 h postexercise. Blood samples were analyzed for ßCTX, P1NP, sclerostin, osteocalcin, IGF-1, and irisin. Significant effects of acute exercise (main effect of time) were observed as increases in concentrations of IGF-1, irisin, osteocalcin, and P1NP from rest to postexercise. A sex*time interaction indicated a greater decline in ßCTX concentration from rest to 2 h postexercise and a greater increase in sclerostin concentration from rest to immediately postexercise in male compared with female participants. Sex differences (main effect of sex) were also observed for irisin and P1NP concentrations. In summary, changes in concentrations of biochemical markers of bone metabolism and muscle-bone crosstalk were observed in males and females after an acute bout of resistance exercise and following 12 weeks of resistance+interval training.


Subject(s)
Resistance Training , Humans , Male , Female , Young Adult , Insulin-Like Growth Factor I , Osteocalcin , Fibronectins , Exercise , Bone Remodeling
9.
Med Sci Sports Exerc ; 56(2): 340-349, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37771068

ABSTRACT

PURPOSE: Servicewomen are at increased risk of common mental disorders compared with servicemen and their female civilian counterparts. The prevalence of eating disorder risk and common mental disorders, and associated risk factors in British servicewomen are poorly understood. METHODS: All women younger than 45 yr in the UK Armed Forces were invited to complete a survey about demographics, exercise behaviors, eating behaviors, and common mental disorders. RESULTS: A total of 3022 women participated; 13% of participants were at high risk of an eating disorder based on Brief Eating Disorder in Athletes Questionnaire and Female Athlete Screening Tool scores. Twenty-five percent of participants had symptoms of anxiety (seven-item Generalized Anxiety Disorder Assessment score ≥10), and 26% had symptoms of depression (nine-item Patient Health Questionnaire score ≥10). Older age was associated with a lower risk, and heavier body mass was associated with a higher risk, of eating disorders ( P ≤ 0.043). Older age and higher rank were associated with a lower risk of symptoms of anxiety and depression ( P ≤ 0.031), and a heavier body mass was associated with a higher risk of symptoms of depression ( P ≤ 0.012). Longer habitual sleep duration was associated with a lower risk of eating disorders and symptoms of anxiety and depression ( P ≤ 0.028). A higher volume of field exercise was associated with a lower risk, and a higher volume of military physical training and personal physical training was associated with a higher risk, of eating disorders ( P ≤ 0.024). Job role and deployment history were not associated with any outcome. CONCLUSIONS: Sleeping and training habits provide potential novel targets for exploring how common mental disorders can be managed in British servicewomen.


Subject(s)
Feeding and Eating Disorders , Military Personnel , Female , Humans , Anxiety/epidemiology , Feeding and Eating Disorders/epidemiology , Anxiety Disorders , Risk Factors , Depression/epidemiology
10.
Eur J Sport Sci ; 23(12): 2411-2424, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37517090

ABSTRACT

In the British Army, ground close combat roles have opened to women, however, they must pass the newly developed, gender-neutral Role Fitness Tests for Soldiers (RFT(S)). Due to physiological differences between sexes, training that optimally prepares both sexes for military occupational demands and the RFT(S) is needed. The purpose of this study was to determine the efficacy of a 12-week periodized strength and power programme with concurrent interval training on RFT(S) performance and determine if performance adaptations differed between sexes. 39 recruit-aged (18-35 yrs) participants, including 21 men (29 ± 1 yrs) and 18 women (27 ± 1 yrs), completed the study. Participants performed 3 training sessions per week that included strength and power resistance training followed by interval training. Pre- to post-training, improvements were observed for seated medicine ball throw (4.5%, p < 0.001), casualty drag (29.8%, p < 0.001), single lift (8.9%, p < 0.001), water can carry (13.8%, p = 0.012), repeated lift and carry (6.5%, p < 0.001), 2-km load carriage (7.2%, p < 0.001) and 2-km run (3.2%, p = 0.021). Pre- to post-training improvements were also observed for maximal squat (27.0%, p < 0.001), bench press (8.9%, p < 0.001) and deadlift (24.6%, p < 0.001) maximal strength, but not upper body power or aerobic capacity. No differences in RFT(S) improvements were observed between sexes, however men performed better than women in all RFT(S) and physical performance measures. Concurrent resistance and interval training improves military occupational performance in men and women; however, women may need more training than men to pass the gender-neutral RFT(S).


Twelve weeks of concurrent resistance and interval training improved seated medicine ball throw, casualty drag, single lift, water can carry, repeated lift and carry, 2-km load carriage and 2-km run performance, military occupational performance measures that comprise the British Army Role Fitness Test for Soldiers (RFT(S)).Men and women demonstrated similar military occupational performance improvements from pre- to post-training, however, men performed better than women in all measures.Simple linear regression analyses between improvements in RFT(S) tasks and measures of physical fitness (one-repetition maximal strength, upper body power, lower body power, aerobic capacity) demonstrated limited significant associations suggesting that military occupational performance improvement relies on simultaneous development of multiple fitness domains.


Subject(s)
Military Personnel , Resistance Training , Female , Humans , Male , Exercise , Exercise Tolerance/physiology , Muscle Strength , Physical Fitness/physiology , Task Performance and Analysis , Adolescent , Young Adult , Adult
11.
BMC Musculoskelet Disord ; 24(1): 496, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328859

ABSTRACT

BACKGROUND: Military field exercises are characterised by high volumes of exercise and prolonged periods of load carriage. Exercise can decrease circulating serum calcium and increase parathyroid hormone and bone resorption. These disturbances to calcium and bone metabolism can be attenuated with calcium supplementation immediately before exercise. This randomised crossover trial will investigate the effect of calcium supplementation on calcium and bone metabolism, and bone mineral balance, during load carriage exercise in women. METHODS: Thirty women (eumenorrheic or using the combined oral contraceptive pill, intrauterine system, or intrauterine device) will complete two experimental testing sessions either with, or without, a calcium supplement (1000 mg). Each experimental testing session will involve one 120 min session of load carriage exercise carrying 20 kg. Venous blood samples will be taken and analysed for biochemical markers of bone resorption and formation, calcium metabolism, and endocrine function. Urine will be collected pre- and post-load carriage to measure calcium isotopes for the calculation of bone calcium balance. DISCUSSION: The results from this study will help identify whether supplementing women with calcium during load carriage is protective of bone and calcium homeostasis. TRIAL REGISTRATION: NCT04823156 (clinicaltrials.gov).


Subject(s)
Bone Resorption , Calcium , Female , Humans , Calcium/metabolism , Cross-Over Studies , Parathyroid Hormone , Bone Resorption/prevention & control , Dietary Supplements , Biomarkers , Randomized Controlled Trials as Topic
12.
J Appl Physiol (1985) ; 134(6): 1481-1495, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37141423

ABSTRACT

This study investigated sex differences in, and the effect of protein supplementation on, bone metabolism during a 36-h military field exercise. Forty-four British Army Officer cadets (14 women) completed a 36-h field exercise. Participants consumed either their habitual diet [n = 14 women (Women) and n = 15 men (Men Controls)] or the habitual diet with an additional 46.6 g·day-1 of protein for men [n = 15 men (Men Protein)]. Women and Men Protein were compared with Men Controls to examine the effect of sex and protein supplementation. Circulating markers of bone metabolism were measured before, 24 h after (postexercise), and 96 h after (recovery) the field exercise. Beta C-telopeptide cross links of type 1 collagen and cortisol were not different between time points or Women and Men Controls (P ≥ 0.094). Procollagen type I N-terminal propeptide decreased from baseline to postexercise (P < 0.001) and recovery (P < 0.001) in Women and Men Controls. Parathyroid hormone (PTH) increased from baseline to post-exercise (P = 0.006) and decreased from postexercise to recovery (P = 0.047) in Women and Men Controls. Total 25(OH)D increased from baseline to postexercise (P = 0.038) and recovery (P < 0.001) in Women and Men Controls. Testosterone decreased from baseline to post-exercise (P < 0.001) and recovery (P = 0.007) in Men Controls, but did not change for Women (all P = 1.000). Protein supplementation in men had no effect on any marker. Men and women experience similar changes to bone metabolism-decreased bone formation and increased PTH-following a short-field exercise. Protein had no protective effect likely because of the energy deficit.NEW & NOTEWORTHY Energy deficits are common in arduous military training and can cause disturbances to bone metabolism. This study provides first evidence that short periods of severe energy deficit and arduous exercise-in the form of a 36-h military field exercise-can suppress bone formation for at least 96 h, and the suppression in bone formation was not different between men and women. Protein feeding does not offset decreases in bone formation during severe energy deficits.


Subject(s)
Military Personnel , Humans , Male , Female , Parathyroid Hormone , Bone and Bones , Dietary Supplements , Energy Metabolism
13.
Med Sci Sports Exerc ; 55(7): 1307-1316, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36893306

ABSTRACT

PURPOSE: This study aimed to investigate associations between menstrual function, eating disorders, and risk of low energy availability with musculoskeletal injuries in British servicewomen. METHODS: All women younger than 45 yr in the UK Armed Forces were invited to complete a survey about menstrual function, eating behaviors, exercise behaviors, and injury history. RESULTS: A total of 3022 women participated; 2% had a bone stress injury in the last 12 months, 20% had ever had a bone stress injury, 40% had a time-loss musculoskeletal injury in the last 12 months, and 11% were medically downgraded for a musculoskeletal injury. Menstrual disturbances (oligomenorrhea/amenorrhea, history of amenorrhea, and delayed menarche) were not associated with injury. Women at high risk of disordered eating (Female Athlete Screening Tool score >94) were at higher risk of history of a bone stress injury (odds ratio (OR; 95% confidence interval (CI)), 2.29 (1.67-3.14); P < 0.001) and time-loss injury in the last 12 months (OR (95% CI), 1.56 (1.21-2.03); P < 0.001) than women at low risk of disordered eating. Women at high risk of low energy availability (Low Energy Availability in Females Questionnaire score ≥8) were at higher risk of bone stress injury in the last 12 months (OR (95% CI), 3.62 (2.07-6.49); P < 0.001), history of a bone stress injury (OR (95% CI), 2.08 (1.66-2.59); P < 0.001), a time-loss injury in the last 12 months (OR (95% CI), 9.69 (7.90-11.9); P < 0.001), and being medically downgraded with an injury (OR (95% CI), 3.78 (2.84-5.04); P < 0.001) than women at low risk of low energy availability. CONCLUSIONS: Eating disorders and risk of low energy availability provide targets for protecting against musculoskeletal injuries in servicewomen.


Subject(s)
Amenorrhea , Feeding and Eating Disorders , Female , Humans , Amenorrhea/complications , Menstruation Disturbances , Exercise , Menstruation , Feeding and Eating Disorders/epidemiology
14.
Sports Med Open ; 9(1): 16, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36811697

ABSTRACT

Prolonged low energy availability, which is the underpinning aetiology of the Relative Energy Deficiency in Sport and the Female and Male Athlete Triad frameworks, can have unfavourable impacts on both health and performance in athletes. Energy availability is calculated as energy intake minus exercise energy expenditure, expressed relative to fat free mass. The current measurement of energy intake is recognized as a major limitation for assessing energy availability due to its reliance on self-report methods, in addition to its short-term nature. This article introduces the application of the energy balance method for the measurement of energy intake, within the context of energy availability. The energy balance method requires quantification of the change in body energy stores over time, with concurrent measurement of total energy expenditure. This provides an objective calculation of energy intake, which can then be used for the assessment of energy availability. This approach, the Energy Availability - Energy Balance (EAEB) method, increases the reliance on objective measurements, provides an indication of energy availability status over longer periods and removes athlete burden to self-report energy intake. Implementation of the EAEB method could be used to objectively identify and detect low energy availability, with implications for the diagnosis and management of Relative Energy Deficiency in Sport and the Female and Male Athlete Triad.

16.
BMJ Mil Health ; 169(1): 62-68, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36657827

ABSTRACT

INTRODUCTION: Following the opening of all combat roles to women across the UK Armed Forces, there is a requirement to understand the risk of injury to these female personnel. Women injure at a higher rate than men during basic military training, but fewer data are published from individuals who have passed military training. METHODS: A bespoke survey was designed to investigate differences in injury prevalence and medical downgrading between sexes and career employment groups (ie, job roles) in the UK Armed Forces. RESULTS: Questionnaire data were evaluated from 847 service personnel (87% men) employed in combat roles (Royal Marines, Infantry, Royal Armoured Corps, Royal Air Force Regiment (all men)) and non-combat roles (Royal Regiment of Artillery, Corps of Royal Engineers, Royal Logistic Corps and Combat Service Support Corps who were attached to one of the participating units (men and women)). Women reported more total (OR 1.64 (95% CI: 1.03 to 2.59), p=0.035), lower limb (OR 1.92 (95% CI: 1.23 to 2.98), p=0.004) and hip (OR 2.99 (95% CI: 1.59 to 5.62), p<0.001) musculoskeletal injuries in the previous 12 months than men, but there were no sex differences in the prevalence of current or career medical downgrading due to musculoskeletal injury (both p>0.05). There were no differences in 12-month musculoskeletal injury prevalence between men in combat roles and men in non-combat roles (all p>0.05), but men in non-combat roles were more likely to be currently medically downgraded (OR 1.88 (95% CI: 1.27 to 2.78), p=0.001) and medically downgraded during their career (OR 1.49 (95% CI: 1.11 to 2.00), p=0.008) due to musculoskeletal injury than men in combat roles. More time in service and quicker 1.5-mile run times were associated with increased prevalence of total musculoskeletal injuries, and female sex was a predictor of hip injury. CONCLUSIONS: Although women are at greater risk of injury than men, we have no evidence that combat employment is more injurious than non-combat employment. The prevention of hip injuries should form a specific focus of mitigation efforts for women.


Subject(s)
Military Personnel , Musculoskeletal Diseases , Male , Humans , Female , Cohort Studies , Musculoskeletal Diseases/epidemiology , Surveys and Questionnaires , Employment
17.
Front Nutr ; 9: 984541, 2022.
Article in English | MEDLINE | ID: mdl-36337622

ABSTRACT

Female athletes are at increased risk of menstrual disturbances. The prevalence of menstrual disturbances in British Servicewomen and the associated risk factors is unknown. All women under 45 years in the UK Armed Forces were invited to complete a survey about demographics, menstrual function, eating and exercise behaviors, and psychological well-being. 3,022 women participated; 18% had oligomenorrhoea or amenorrhoea in the last 12 months, 25% had a history of amenorrhoea, and 14% had delayed menarche. Women who sleep ≥ 8 h were at a lower risk of a history of amenorrhoea than women who sleep ≤ 5 h [odds ratio (95% confidence intervals) = 0.65 (0.48, 0.89), p = 0.006]. Women who completed > 10 days of field exercise in the last 12 months were at higher risk of a history of amenorrhoea than women completing no field exercise [1.45 (1.13, 1.85), p = 0.004]. Women at high risk of an eating disorder (FAST score >94) were at higher risk of oligomenorrhoea or amenorrhoea [1.97 (1.26, 3.04), p = 0.002] and history of amenorrhoea [2.14 (1.63, 2.79), p < 0.001]. Women with symptoms of anxiety or depression were at higher risk of a history of amenorrhoea [1.46 (1.20, 1.77) and 1.48 (1.22, 1.79), p < 0.001]. British Servicewomen had a similar prevalence of menstrual disturbances to some endurance athletes. Eating disorders, sleep behaviors, and management of mental health, provide targets for protecting health of the reproductive axis.

18.
Physiol Genomics ; 54(9): 350-359, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35816651

ABSTRACT

Extracellular vesicles (EVs) are established mediators of adaptation to exercise. Currently, there are no published data comparing changes in EVs between men and women after resistance exercise. We tested the hypothesis that EV profiles would demonstrate a sex-specific signature following resistance exercise. Ten men and 10 women completed an acute heavy resistance exercise test for back squats using 75% of their one-repetition maximum. Blood was drawn before and immediately after exercise. EVs were isolated from plasma using size exclusion chromatography and stained with antibodies associated with exosomes (CD63), microvesicles (VAMP3), apoptotic bodies (THSD1), and a marker for skeletal muscle EVs (SGCA). CD63+ EV concentration and proportion of total EVs increased 23% (P = 0.006) and 113% (P = 0.005) in both sexes. EV mean size declined in men (P = 0.020), but not in women, suggesting a relative increase in small EVs in men. VAMP3+ EV concentration and proportion of total EVs increased by 93% (P = 0.025) and 61% (P = 0.030) in men and women, respectively. SGCA+ EV concentration was 69% higher in women compared with men independent of time (P = 0.007). Differences were also observed for CD63, VAMP3, and SGCA median fluorescence intensity, suggesting altered surface protein density according to sex and time. There were no significant effects of time or sex on THSD1+ EVs or fluorescence intensity. EV profiles, particularly among exosome-associated and muscle-derived EVs, exhibit sex-specific differences in response to resistance exercise which should be further studied to understand their relationship to training adaptations.


Subject(s)
Exosomes , Extracellular Vesicles , Resistance Training , Biomarkers/metabolism , Exosomes/chemistry , Exosomes/metabolism , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Female , Humans , Male , Vesicle-Associated Membrane Protein 3/metabolism
19.
JMIR Res Protoc ; 11(6): e32315, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35648463

ABSTRACT

BACKGROUND: Postpartum women are at an increased risk of pelvic floor dysfunction, musculoskeletal injury, and poor psychological health and have reduced physical fitness compared to before pregnancy. There is no formal, evidence-based rehabilitation and physical development program for returning UK servicewomen to work following childbirth. OBJECTIVE: This study aims to examine the efficacy of a rehabilitation and physical development intervention for returning postpartum UK servicewomen to occupational fitness. METHODS: Eligible servicewomen will be assigned to a training or control group in a nonrandomized controlled trial 6 weeks after childbirth. Group allocation will be based on the location of standard pregnancy and postpartum care. The control group will receive standard care, with no prescribed intervention. The training group will start an 18-week core and pelvic health rehabilitation program 6 weeks post partum and a 12-week resistance and high-intensity interval training program 12 weeks post partum. All participants will attend 4 testing sessions at 6, 12, 18, and 24 weeks post partum for the assessment of occupational physical performance, pelvic health, psychological well-being, quality of life, and musculoskeletal health outcomes. Occupational physical performance tests will include vertical jump, mid-thigh pull, seated medicine ball throw, and a timed 2-km run. Pelvic health tests will include the Pelvic Organ Prolapse Quantification system, the PERFECT (power, endurance, repetitions, fast, every contraction timed) scheme for pelvic floor strength, musculoskeletal physiotherapy assessment, the Pelvic Floor Distress Inventory-20 questionnaire, and the International Consultation on Incontinence Questionnaire-Vaginal Symptoms. Psychological well-being and quality of life tests will include the World Health Organization Quality of Life questionnaire and the Edinburgh Postnatal Depression Scale. Musculoskeletal health outcomes will include body composition; whole-body areal bone mineral density; tibial volumetric bone mineral density, geometry, and microarchitecture; patella tendon properties; muscle architecture; muscle protein and collagen turnover; and muscle mass and muscle breakdown. Data will be analyzed using linear mixed-effects models, with participants included as random effects, and group and time as fixed effects to assess within- and between-group differences over time. RESULTS: This study received ethical approval in April 2019 and recruitment started in July 2019. The study was paused in March 2020 owing to the COVID-19 pandemic. Recruitment restarted in May 2021. The results are expected in September 2022. CONCLUSIONS: This study will inform the best practice for the safe and optimal return of postpartum servicewomen to physically and mentally demanding jobs. TRIAL REGISTRATION: ClinicalTrials.gov NCT04332757; https://clinicaltrials.gov/ct2/show/NCT04332757. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/32315.

20.
Int J Sport Nutr Exerc Metab ; 32(3): 195-203, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35393372

ABSTRACT

Military training is characterized by high daily energy expenditures which are difficult to match with energy intake, potentially resulting in negative energy balance (EB) and low energy availability (EA). The aim of this study was to quantify EB and EA during British Army Officer Cadet training. Thirteen (seven women) Officer Cadets (mean ± SD: age 24 ± 3 years) volunteered to participate. EB and EA were estimated from energy intake (weighing of food and food diaries) and energy expenditure (doubly labeled water) measured in three periods of training: 9 days on-camp (CAMP), a 5-day field exercise (FEX), and a 9-day mixture of both CAMP and field-based training (MIX). Variables were compared by condition and gender with a repeated-measures analysis of variance. Negative EB was greatest during FEX (-2,197 ± 455 kcal/day) compared with CAMP (-692 ± 506 kcal/day; p < .001) and MIX (-1,280 ± 309 kcal/day; p < .001). EA was greatest in CAMP (23 ± 10 kcal·kg free-fat mass [FFM]-1·day-1) compared with FEX (1 ± 16 kcal·kg FFM-1·day-1; p = .002) and MIX (10 ± 7 kcal·kg FFM-1·day-1; p = .003), with no apparent difference between FEX and MIX (p = .071). Irrespective of condition, there were no apparent differences between gender in EB (p = .375) or EA (p = .385). These data can be used to inform evidenced-based strategies to manage EA and EB during military training, and enhance the health and performance of military personnel.


Subject(s)
Military Personnel , Adult , Energy Intake , Energy Metabolism , Exercise , Female , Humans , Nutritional Status , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...