Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-35017148

ABSTRACT

BACKGROUND: Adoptive T cell transfer (ACT) therapy improves outcomes in patients with advanced malignancies, yet many individuals relapse due to the infusion of T cells with poor function or persistence. Toll-like receptor (TLR) agonists can invigorate antitumor T cell responses when administered directly to patients, but these responses often coincide with toxicities. We posited that TLR agonists could be repurposed ex vivo to condition T cells with remarkable potency in vivo, circumventing TLR-related toxicity. METHODS: In this study we investigated how tumor-specific murine CD8+ T cells and human tumor infiltrating lymphocytes (TILs) are impacted when expanded ex vivo with the TLR9 agonist CpG. RESULTS: Herein we reveal a new way to reverse the tolerant state of adoptively transferred CD8+ T cells against tumors using TLR-activated B cells. We repurposed the TLR9 agonist, CpG, commonly used in the clinic, to bolster T cell-B cell interactions during expansion for ACT. T cells expanded ex vivo from a CpG-treated culture demonstrated potent antitumor efficacy and prolonged persistence in vivo. This antitumor efficacy was accomplished without in vivo administration of TLR agonists or other adjuvants of high-dose interleukin (IL)-2 or vaccination, which are classically required for effective ACT therapy. CpG-conditioned CD8+ T cells acquired a unique proteomic signature hallmarked by an IL-2RαhighICOShighCD39low phenotype and an altered metabolic profile, all reliant on B cells transiently present in the culture. Likewise, human TILs benefitted from expansion with CpG ex vivo, as they also possessed the IL-2RαhighICOShighCD39low phenotype. CpG fostered the expansion of potent CD8+ T cells with the signature phenotype and antitumor ability via empowering a direct B-T cell interaction. Isolated B cells also imparted T cells with the CpG-associated phenotype and improved tumor immunity without the aid of additional antigen-presenting cells or other immune cells in the culture. CONCLUSIONS: Our results demonstrate a novel way to use TLR agonists to improve immunotherapy and reveal a vital role for B cells in the generation of potent CD8+ T cell-based therapies. Our findings have immediate implications in the clinical treatment of advanced solid tumors.


Subject(s)
B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Melanoma/drug therapy , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL
2.
Mol Cancer Ther ; 20(1): 150-160, 2021 01.
Article in English | MEDLINE | ID: mdl-33037138

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a prominent fibrotic stroma, which is a result of interactions between tumor, immune and pancreatic stellate cells (PSC), or cancer-associated fibroblasts (CAF). Targeting inflammatory pathways present within the stroma may improve access of effector immune cells to PDAC and response to immunotherapy. Heat shock protein-90 (Hsp90) is a chaperone protein and a versatile target in pancreatic cancer. Hsp90 regulates a diverse array of cellular processes of relevance to both the tumor and the immune system. However, to date the role of Hsp90 in PSC/CAF has not been explored in detail. We hypothesized that Hsp90 inhibition would limit inflammatory signals, thereby reprogramming the PDAC tumor microenvironment to enhance sensitivity to PD-1 blockade. Treatment of immortalized and primary patient PSC/CAF with the Hsp90 inhibitor XL888 decreased IL6, a key cytokine that orchestrates immune changes in PDAC at the transcript and protein level in vitro XL888 directly limited PSC/CAF growth and reduced Jak/STAT and MAPK signaling intermediates and alpha-SMA expression as determined via immunoblot. Combined therapy with XL888 and anti-PD-1 was efficacious in C57BL/6 mice bearing syngeneic subcutaneous (Panc02) or orthotopic (KPC-Luc) tumors. Tumors from mice treated with both XL888 and anti-PD-1 had a significantly increased CD8+ and CD4+ T-cell infiltrate and a unique transcriptional profile characterized by upregulation of genes associated with immune response and chemotaxis. These data demonstrate that Hsp90 inhibition directly affects PSC/CAF in vitro and enhances the efficacy of anti-PD-1 blockade in vivo.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Pancreatic Neoplasms/pathology , Pancreatic Stellate Cells/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Azabicyclo Compounds/pharmacology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice, Inbred C57BL , Pancreatic Neoplasms/genetics , Pancreatic Stellate Cells/drug effects , Pancreatic Stellate Cells/metabolism , Phenotype , Phthalic Acids/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Treatment Outcome , Tumor Microenvironment , Xenograft Model Antitumor Assays
3.
Br J Cancer ; 123(9): 1377-1386, 2020 10.
Article in English | MEDLINE | ID: mdl-32747748

ABSTRACT

BACKGROUND: BTC is an aggressive disease exacerbated by inflammation and immune suppression. Expansion of immunosuppressive cells occurs in biliary tract cancer (BTC), yet the role of BTC-derived cytokines in this process is unclear. METHODS: Activated signalling pathways and cytokine production were evaluated in a panel of human BTC cell lines. Human peripheral blood mononuclear cells (PBMCs) were cultured with BTC supernatants, with and without cytokine neutralising antibodies, and analysed by flow cytometry or immunoblot. A human BTC tissue microarray (TMA, n = 69) was stained for IL-6, GM-CSF, and CD33+S100a9+ cells and correlated with clinical outcomes. RESULTS: Immunomodulatory factors (IL-6, GM-CSF, MCP-1) were present in BTC supernatants. BTC supernatants expanded CD33dimCD11b+HLA-DRlow/- myeloid-derived suppressor cells (MDSCs) from human PBMCs. Neutralisation of IL-6 and GM-CSF in BTC supernatants inhibited activation of STAT3/5, respectively, in PBMCs, with heterogeneous effects on MDSC expansion in vitro. Staining of a BTC TMA revealed a positive correlation between IL-6 and GM-CSF, with each cytokine and more CD33+S100a9+ cells. Increased CD33+S100a9+ staining positively correlated with higher tumour grade, differentiation and the presence of satellite lesions. CONCLUSION: BTC-derived factors promote suppressive myeloid cell expansion, and higher numbers of CD33+S100a9+ cells in resectable BTC tumours correlates with more aggressive disease.


Subject(s)
Biliary Tract Neoplasms/metabolism , Biliary Tract Neoplasms/pathology , Cell Proliferation/drug effects , Cytokines/pharmacology , Myeloid-Derived Suppressor Cells/drug effects , Calgranulin B/metabolism , Cell Count , Cells, Cultured , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Humans , Lymphocyte Activation/drug effects , Myeloid Cells/drug effects , Myeloid Cells/pathology , Myeloid Cells/physiology , Myeloid-Derived Suppressor Cells/pathology , Myeloid-Derived Suppressor Cells/physiology , Neoplasm Grading , Neoplasm Invasiveness , Sialic Acid Binding Ig-like Lectin 3/metabolism
4.
Sci Rep ; 9(1): 5068, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30911044

ABSTRACT

Soybeans are a rich source of isoflavones that have been linked with anti-inflammatory processes and various health benefits. However, specific mechanisms whereby soy bioactives impact immune cell subsets are unclear. Isoflavones, such as genistein and daidzein, are metabolized by microbes to bioactive metabolites as O-desmethylangolensin (O-DMA) and equol, whose presence has been linked to health benefits. We examined how soy isoflavones and metabolites impact natural killer (NK) cell signaling and function. We observe no impact of isoflavones on viability of healthy donor peripheral blood mononuclear cells (PBMCs) or NK cells, even at high (25 µM) concentrations. However, pre-treatment of PBMCs with physiologically-relevant concentrations of genistein (p = 0.0023) and equol (p = 0.006) decreases interleukin (IL)-12/IL-18-induced interferon-gamma (IFN-γ) production versus controls. Detailed cellular analyses indicate genistein and equol decrease IL-12/IL-18-induced IFN-γ production by human NK cell subsets, but do not consistently alter cytotoxicity. At the level of signal transduction, genistein decreases IL-12/IL-18-induced total phosphorylated tyrosine, and phosphorylation MAPK pathway components. Further, genistein limits IL-12/IL-18-mediated upregulation of IL-18Rα expression on NK cells (p = 0.0109). Finally, in vivo studies revealed that C57BL/6 mice fed a soy-enriched diet produce less plasma IFN-γ following administration of IL-12/IL-18 versus control-fed animals (p < 0.0001). This study provides insight into how dietary soy modulates NK cell functions.


Subject(s)
Cytokine-Induced Killer Cells/drug effects , Cytokine-Induced Killer Cells/immunology , Glycine max/chemistry , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Isoflavones/chemistry , Isoflavones/pharmacology , Biomarkers , Cell Survival/drug effects , Cytokine-Induced Killer Cells/metabolism , Cytokines/genetics , Cytokines/metabolism , Gene Expression , Genistein/metabolism , Humans , Immunologic Factors/metabolism , Immunomodulation/drug effects , Immunophenotyping , Isoflavones/metabolism , Molecular Structure , Signal Transduction , Glycine max/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...