Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 22750, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123585

ABSTRACT

Free-roaming domestic dogs (FRDD), as vectors of zoonotic diseases, are of high relevance for public health. Understanding roaming patterns of dogs can help to design disease control programs and disease transmission simulation models. Studies on GPS tracking of dogs report stark differences in recording periods. So far, there is no accepted number of days required to capture a representative home range (HR) of FRDD. The objective of this study was to evaluate changes in HR size and shape over time of FRDD living in Chad, Guatemala, Indonesia and Uganda and identify the period required to capture stable HR values. Dogs were collared with GPS units, leading to a total of 46 datasets with, at least, 19 recorded days. For each animal and recorded day, HR sizes were estimated using the Biased Random Bridge method and percentages of daily change in size and shape calculated and taken as metrics. The analysis revealed that the required number of days differed substantially between individuals, isopleths, and countries, with the extended HR (95% isopleth value) requiring a longer recording period. To reach a stable HR size and shape values for 75% of the dogs, 26 and 21 days, respectively, were sufficient. However, certain dogs required more extended observational periods.


Subject(s)
Homing Behavior , Public Health , Animals , Dogs , Indonesia , Guatemala , Chad
2.
Sci Rep ; 12(1): 20928, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463285

ABSTRACT

Domestic dogs can affect human health through bites and pathogen transmission, particularly in resource-poor countries where dogs, including owned ones, predominantly roam freely. Habitat and resource selection analysis methods are commonplace in wildlife studies but have not been used to investigate the environmental resource use of free-roaming domestic dogs (FRDD). The present study implements GPS devices to investigate habitat selection by FRDD from an urban site and a rural site in Indonesia, and one urban and two rural sites in Guatemala (N = 321 dogs). Spatial mixed effects logistic regression models, accounting for heterogeneous distribution of the resources, showed that patterns of habitat selection by FRDD were similar across study sites. The most preferred resources were anthropogenic, being buildings and roads, which implies selection for human proximity. Vegetation and open fields were less preferred and steep terrain was avoided, indicating that FRDD were synanthropic and that their space patterns likely optimised energy use. Results presented here provide novel data on FRDD habitat selection patterns, while improving our understanding of dog roaming behaviour. These findings provide insights into possible high-risk locations for pathogen transmission for diseases such as rabies, and can assist management authorities in the planning and deployment of efficient disease control campaigns, including oral vaccination.


Subject(s)
Rabies , Humans , Dogs , Animals , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Animals, Wild , Guatemala/epidemiology , Indonesia , Ecosystem
3.
Front Vet Sci ; 9: 868380, 2022.
Article in English | MEDLINE | ID: mdl-35754536

ABSTRACT

Vaccination is the main tool to prevent the circulation of rabies in dog populations. The development of an immune response after vaccination differs between individual dogs and depends on many factors such as dog characteristics, management, or genetics. Here, we first investigated the level of, and associated factors for, the presence of binding antibodies in 130 healthy dogs from Flores Island, Indonesia. Secondly, we identified factors associated with the development of binding antibodies within 30 days after vaccination among a subsample of dogs that had a binding antibody titre <0.5 EU/ml at the day of vaccination (D0, N = 91). Blood samples were collected from the individual dogs immediately before vaccination at D0 and 30 days after vaccination (D30). The rabies antibody titres were determined using ELISAs. Information on potential risk factors such as the dog's age and sex, history of vaccination, type and frequency of feeding, and BCS (body condition score) were gathered during interviews at D0. Regression analyses were performed to identify the risk factors associated with the presence of binding antibody titre ≥0.5 EU/ml at D0 for the 130 dogs and the development of binding antibody titre ≥0.5EU/ml at D30 for the 91 dogs. The results showed that the proportion of dogs with antibody titre ≥0.5 EU/ml was 30% (39/130) at D0. The only factors found to be significantly influencing the presence of binding antibodies titres ≥0.5 EU/ml was previous vaccination within 1 year before D0 [46.8 vs. 14.7%, Odds ratio (OR) = 3.6, 95%CI 1.5-9.3; p-value = 0.006], although the same trend was found for dogs of higher age and better BCS. Eighty-six percent (79/91) of dogs whose rabies binding antibody level was <0.5 EU/ml at D0 had developed an adequate immune response (≥0.5 EU/ml) at D30. Almost a significantly higher proportion developed an adequate immune response in dogs of good BCS compared to those of poor BCS (95.3% vs. 79.2%, OR = 4.7, 95%CI 1.1-32.5; p-value = 0.057. Twelve (13.2%) dogs retain binding antibody level <0.5 EU/ml at D30, indicating poor immune response after vaccination. A majority of them did not receive vaccine before D0 according to the owner and had poor BCS (83.3%; 10/12). Our findings show the high effectiveness of rabies vaccine in under field conditions to develop measurable immunity and the importance of a good BCS, often achievable by good dog keeping conditions, for developing efficient immunity after parenteral vaccination in dogs.

4.
Front Vet Sci ; 9: 863526, 2022.
Article in English | MEDLINE | ID: mdl-35769323

ABSTRACT

Rabies is a zoonotic disease that is mainly transmitted to humans through dog bites. It remains a major public health threat in many Asian and African countries, including Uganda. The main objective of this study was to investigate awareness, knowledge, and perceptions of communities toward human and dog health related to rabies prevention, as well as dog management practices within Masaka district, central Uganda. Data collection involved nine key informant interviews (KIIs) and six focus group discussions (FGDs). Methods used during focus group discussions included qualitative interviews (using open-ended questions), simple ranking, and proportional piling. Data from KIIs and FGDs were analyzed using content analysis in NVivo (version 12.0). This study reveals that community members in the rural settings uses herbal concoctions in replacement or as an alternative to dog vaccination. Furthermore, the study reveals that dogs play the vital roles in the households like as they offer protection to people and household properties, despite being ranked second least among the household animals. The commonest livelihood activity was a small-scale mixed farming. Most of the households kept dogs, but they are ranked at second lowest in terms of economic value among all domestic animals. Free roaming and tethering were the common dog-keeping systems, and home-based feed (food leftovers, bones) was provided mainly to the tethered dogs. Rabies, also locally known as "Eddalu Lyembwa" (that can be translated as "madness of the dogs"), was ranked as the disease of most important among dogs, besides other common diseases such as skin diseases, venereal diseases, worm infestations, and tick infestations. Inadequate vaccination services for both humans and dogs were reported, and dog bite victims traveled a long distance to seek for post-exposure prophylaxis after dog bites. It can be concluded that there is a clear request for periodic mass vaccination campaigns against rabies among dogs, and access to vaccines within reasonable distances by humans after a rabies exposure, but also pre-emptive vaccination for those at high risk, such as veterinarians, needs to be improved.

5.
Ecol Evol ; 12(1): e8498, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35127025

ABSTRACT

Rabies is a neglected zoonotic disease that causes around 59,000 deaths per year globally. In Africa, rabies virus is mostly maintained in populations of free-roaming domestic dogs (FRDD) that are predominantly owned. Characterizing the roaming behavior of FRDD can provide relevant information to understand disease spread and inform prevention and control interventions. To estimate the home range (HR) of FRDD and identify predictors of HR size, we studied 168 dogs in seven different areas of Blantyre city, Malawi, tracking them with GPS collars for 1-4 days. The median core HR (HR50) of FRDD in Blantyre city was 0.2 ha (range: 0.08-3.95), while the median extended HR (HR95) was 2.14 ha (range: 0.52-23.19). Multivariable linear regression models were built to identify predictors of HR size. Males presented larger HR95 than females. Dogs living in houses with a higher number of adults had smaller HR95, while those living in houses with higher number of children had larger HR95. Animals that received products of animal origin in their diets had larger HR95, and only in the case of females, animals living in low-income areas had larger HR50 and HR95. In contrast, whether male dogs were castrated or not was not found to be associated with HR size. The results of this study may help inform rabies control and prevention interventions in Blantyre city, such as designing risk-based surveillance activities or rabies vaccination campaigns targeting certain FRDD subpopulations. Our findings can also be used in rabies awareness campaigns, particularly to illustrate the close relationship between children and their dogs.

6.
PLoS Negl Trop Dis ; 15(9): e0009688, 2021 09.
Article in English | MEDLINE | ID: mdl-34492033

ABSTRACT

Effective parenteral vaccines are available to control rabies in dogs. While such vaccines are successfully used worldwide, the period between vaccine boosters required to guarantee protection of the population against rabies varies between vaccines and populations. In Flores Island, Indonesia, internationally and locally produced rabies vaccines are used during annual vaccination campaigns of predominantly free-roaming owned domestic dogs. The study objective was to identify the duration of the presence and factors associated with the loss of adequate level of binding antibodies (≥0.5 EU/ml) following rabies vaccination in a domestic dog population on Flores Island. A total of 171 dogs that developed an antibody titre higher or equal to 0.5 EU/ml 30 days after vaccination (D30), were repeatedly sampled at day 90, 180, 270, and 360 after vaccination. On the day of vaccination (D0), an interview was performed with dog owners to collect information on dog characteristics (age, sex, body condition score (BCS)), history of rabies vaccination, kind of daily food, frequency of feeding, and origin of the dog. Serum samples were collected and the level of antibodies was quantitatively assessed using ELISA tests. Dogs were categorized as having an adequate level of binding antibodies (≥0.5 EU/ml) or inadequate level of binding antibodies (<0.5 EU/ml) at each time points examined. A total of 115, 72, 23, and 31 dogs were sampled at D90, D180, D270, and D360, respectively, with the highest proportion of antibodies ≥ 0.5 EU/ml (58%, 95% CI, 49-67%) at D90, which reduced gradually until D360 (35%, 95% CI, 19-52%). Multivariable logistic regression models showed that loss of adequate level of binding antibodies is significantly associated with dogs having no history of vaccination or vaccination applied more than 12 months before D0, being less than 12 months of age, and having a poor BCS. These results highlight the importance of BCS regarding the immune response duration and provide insights into frequency of vaccination campaigns required for the internationally available vaccine used on Flores Island. For dogs without vaccination history or vaccination being applied more than 12 months before D0, a booster is recommended within 3 months (a largest drop of antibodies was detected within the first 90 days) after the first vaccination to guarantee measurable protection of the population that lasts at least for one year.


Subject(s)
Antibodies, Viral/blood , Dog Diseases/prevention & control , Rabies Vaccines/administration & dosage , Rabies/veterinary , Animals , Antibody Affinity , Dog Diseases/blood , Dog Diseases/epidemiology , Dogs , Female , Indonesia/epidemiology , Male , Rabies/epidemiology , Rabies/prevention & control , Rabies Vaccines/immunology , Vaccination/veterinary
7.
Sci Rep ; 11(1): 12898, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145344

ABSTRACT

Free roaming domestic dogs (FRDD) are the main vectors for rabies transmission to humans worldwide. To eradicate rabies from a dog population, current recommendations focus on random vaccination with at least 70% coverage. Studies suggest that targeting high-risk subpopulations could reduce the required vaccination coverage, and increase the likelihood of success of elimination campaigns. The centrality of a dog in a contact network can be used as a measure of its potential contribution to disease transmission. Our objectives were to investigate social networks of FRDD in eleven study sites in Chad, Guatemala, Indonesia and Uganda, and to identify characteristics of dogs, and their owners, associated with their centrality in the networks. In all study sites, networks had small-world properties and right-skewed degree distributions, suggesting that vaccinating highly connected dogs would be more effective than random vaccination. Dogs were more connected in rural than urban settings, and the likelihood of contacts was negatively correlated with the distance between dogs' households. While heterogeneity in dog's connectedness was observed in all networks, factors predicting centrality and likelihood of contacts varied across networks and countries. We therefore hypothesize that the investigated dog and owner characteristics resulted in different contact patterns depending on the social, cultural and economic context. We suggest to invest into understanding of the sociocultural structures impacting dog ownership and thus driving dog ecology, a requirement to assess the potential of targeted vaccination in dog populations.


Subject(s)
Contact Tracing , Rabies/epidemiology , Rabies/prevention & control , Animals , Disease Vectors , Dog Diseases/virology , Dogs , Humans , Public Health Surveillance , Rabies/transmission , Risk Factors , Sentinel Surveillance
8.
Front Vet Sci ; 8: 617900, 2021.
Article in English | MEDLINE | ID: mdl-33748208

ABSTRACT

Dogs play a major role in public health because of potential transmission of zoonotic diseases, such as rabies. Dog roaming behavior has been studied worldwide, including countries in Asia, Latin America, and Oceania, while studies on dog roaming behavior are lacking in Africa. Many of those studies investigated potential drivers for roaming, which could be used to refine disease control measures. However, it appears that results are often contradictory between countries, which could be caused by differences in study design or the influence of context-specific factors. Comparative studies on dog roaming behavior are needed to better understand domestic dog roaming behavior and address these discrepancies. The aim of this study was to investigate dog demography, management, and roaming behavior across four countries: Chad, Guatemala, Indonesia, and Uganda. We equipped 773 dogs with georeferenced contact sensors (106 in Chad, 303 in Guatemala, 217 in Indonesia, and 149 in Uganda) and interviewed the owners to collect information about the dog [e.g., sex, age, body condition score (BCS)] and its management (e.g., role of the dog, origin of the dog, owner-mediated transportation, confinement, vaccination, and feeding practices). Dog home range was computed using the biased random bridge method, and the core and extended home range sizes were considered. Using an AIC-based approach to select variables, country-specific linear models were developed to identify potential predictors for roaming. We highlighted similarities and differences in term of demography, dog management, and roaming behavior between countries. The median of the core home range size was 0.30 ha (95% range: 0.17-0.92 ha) in Chad, 0.33 ha (0.17-1.1 ha) in Guatemala, 0.30 ha (0.20-0.61 ha) in Indonesia, and 0.25 ha (0.15-0.72 ha) in Uganda. The median of the extended home range size was 7.7 ha (95% range: 1.1-103 ha) in Chad, 5.7 ha (1.5-27.5 ha) in Guatemala, 5.6 ha (1.6-26.5 ha) in Indonesia, and 5.7 ha (1.3-19.1 ha) in Uganda. Factors having a significant impact on the home range size in some of the countries included being male dog (positively), being younger than one year (negatively), being older than 6 years (negatively), having a low or a high BCS (negatively), being a hunting dog (positively), being a shepherd dog (positively), and time when the dog was not supervised or restricted (positively). However, the same outcome could have an impact in a country and no impact in another. We suggest that dog roaming behavior is complex and is closely related to the owner's socioeconomic context and transportation habits and the local environment. Free-roaming domestic dogs are not completely under human control but, contrary to wildlife, they strongly depend upon humans. This particular dog-human bound has to be better understood to explain their behavior and deal with free-roaming domestic dogs related issues.

9.
PLoS One ; 15(4): e0225022, 2020.
Article in English | MEDLINE | ID: mdl-32267848

ABSTRACT

Population size estimation is performed for several reasons including disease surveillance and control, for example to design adequate control strategies such as vaccination programs or to estimate a vaccination campaign coverage. In this study, we aimed at investigating the possibility of using Unmanned Aerial Vehicles (UAV) to estimate the size of free-roaming domestic dog (FRDD) populations and compare the results with two regularly used methods for population estimations: foot-patrol transect survey and the human: dog ratio estimation. Three studies sites of one square kilometer were selected in Petén department, Guatemala. A door-to-door survey was conducted in which all available dogs were marked with a collar and owner were interviewed. The day after, UAV flight were performed twice during two consecutive days per study site. The UAV's camera was set to regularly take pictures and cover the entire surface of the selected areas. Simultaneously to the UAV's flight, a foot-patrol transect survey was performed and the number of collared and non-collared dogs were recorded. Data collected during the interviews and the number of dogs counted during the foot-patrol transects informed a capture-recapture (CR) model fit into a Bayesian inferential framework to estimate the dog population size, which was found to be 78, 259, and 413 in the three study sites. The difference of the CR model estimates compared to previously available dog census count (110 and 289) can be explained by the fact that the study population addressed by the different methods differs. The human: dog ratio covered the same study population as the dog census and tended to underestimate the FRDD population size (97 and 161). Under the conditions within this study, the total number of dogs identified on the UAV pictures was 11, 96, and 71 for the three regions (compared to the total number of dogs counted during the foot-patrol transects of 112, 354 and 211). In addition, the quality of the UAV pictures was not sufficient to assess the presence of a mark on the spotted dogs. Therefore, no CR model could be implemented to estimate the size of the FRDD using UAV. We discussed ways for improving the use of UAV for this purpose, such as flying at a lower altitude in study area wisely chosen. We also suggest to investigate the possibility of using infrared camera and automatic detection of the dogs to increase visibility of the dogs in the pictures and limit workload of finding them. Finally, we discuss the need of using models, such as spatial capture-recapture models to obtain reliable estimates of the FRDD population. This publication may provide helpful directions to design dog population size estimation methods using UAV.


Subject(s)
Dogs , Pets , Animals , Bayes Theorem , Dog Diseases/epidemiology , Dogs/physiology , Guatemala/epidemiology , Humans , Pets/physiology , Population Density , Remote Sensing Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...