Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 20036, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31882735

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 9(1): 16265, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700007

ABSTRACT

Effective personalized therapeutic treatment for hearing loss is currently not available. Cochlear oxidative stress is commonly identified in the pathogenesis of hearing loss based upon findings from excised tissue, thus suggesting a promising druggable etiology. However, the timing and site(s) to target for anti-oxidant treatment in vivo are not clear. Here, we address this long-standing problem with QUEnch-assiSTed Magnetic Resonance Imaging (QUEST MRI), which non-invasively measures excessive production of free radicals without an exogenous contrast agent. QUEST MRI is hypothesized to be sensitive to noise-evoked cochlear oxidative stress in vivo. Rats exposed to a loud noise event that resulted in hair cell loss and reduced hearing capability had a supra-normal MRI R1 value in their cochleae that could be corrected with anti-oxidants, thus non-invasively indicating cochlear oxidative stress. A gold-standard oxidative damage biomarker [heme oxidase 1 (HO-1)] supported the QUEST MRI result. The results from this study highlight QUEST MRI as a potentially transformative measurement of cochlear oxidative stress in vivo that can be used as a biomarker for improving individual evaluation of anti-oxidant treatment efficacy in currently incurable oxidative stress-based forms of hearing loss.

3.
Brain Struct Funct ; 223(5): 2343-2360, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29488007

ABSTRACT

Loud noise frequently results in hyperacusis or hearing loss (i.e., increased or decreased sensitivity to sound). These conditions are often accompanied by tinnitus (ringing in the ears) and changes in spontaneous neuronal activity (SNA). The ability to differentiate the contributions of hyperacusis and hearing loss to neural correlates of tinnitus has yet to be achieved. Towards this purpose, we used a combination of behavior, electrophysiology, and imaging tools to investigate two models of noise-induced tinnitus (either with temporary hearing loss or with permanent hearing loss). Manganese (Mn2+) uptake was used as a measure of calcium channel function and as an index of SNA. Manganese uptake was examined in vivo with manganese-enhanced magnetic resonance imaging (MEMRI) in key auditory brain regions implicated in tinnitus. Following acoustic trauma, MEMRI, the SNA index, showed evidence of spatially dependent rearrangement of Mn2+ uptake within specific brain nuclei (i.e., reorganization). Reorganization of Mn2+ uptake in the superior olivary complex and cochlear nucleus was dependent upon tinnitus status. However, reorganization of Mn2+ uptake in the inferior colliculus was dependent upon hearing sensitivity. Furthermore, following permanent hearing loss, reduced Mn2+ uptake was observed. Overall, by combining testing for hearing sensitivity, tinnitus, and SNA, our data move forward the possibility of discriminating the contributions of hyperacusis and hearing loss to tinnitus.


Subject(s)
Brain/diagnostic imaging , Brain/physiopathology , Hearing Loss/etiology , Noise/adverse effects , Tinnitus/etiology , Acoustic Stimulation , Animals , Auditory Threshold , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss/pathology , Hearing Tests , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Reflex, Startle/physiology , Time Factors , Tinnitus/pathology
4.
Environ Sci Technol ; 44(12): 4672-7, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20465208

ABSTRACT

The Kansas City Light-Duty Vehicle Emissions Study (KCVES) measured exhaust emissions of regulated and unregulated pollutants from 496 vehicles recruited in the Kansas City metropolitan area in 2004 and 2005. Vehicle emissions testing occurred during the summer and winter, with the vehicles operated at ambient temperatures. One key component of this study was the investigation of the influence of ambient temperature on particulate matter (PM) emissions from gasoline-powered vehicles. A subset of the recruited vehicles were tested in both the summer and winter to further elucidate the effects of temperature on vehicle tailpipe emissions. The study results indicated that PM emissions increased exponentially as temperature decreased. In general, PM emissions doubled for every 20 degrees F drop in ambient temperature, with these increases independent of vehicle model year. The effects of temperature on vehicle emissions was most pronounced during the initial start-up of the vehicle (cold start phase) when the vehicle was still cold, leading to inefficient combustion, inefficient catalyst operation, and the potential for the vehicle to be operating under fuel-rich conditions. The large data set available from this study also allowed for the development of a model to describe temperature effects on PM emission rates due to changing ambient conditions. This study has been used as the foundation to develop PM emissions rates, and to model the impact of ambient temperature on these rates, for gasoline-powered vehicles in the EPA's new regulatory motor vehicle emissions model, MOVES.


Subject(s)
Gasoline/analysis , Motor Vehicles , Particulate Matter/analysis , Temperature , Vehicle Emissions/analysis , Kansas , Particulate Matter/chemistry , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...