Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 14: 1211972, 2023.
Article in English | MEDLINE | ID: mdl-37520829

ABSTRACT

Introduction: Obesogenic diets aggravate osteoarthritis (OA) by inducing low-grade systemic inflammation, and diet composition may affect OA severity. Here, we investigated the effect of diet on joint damage and inflammation in an OA rat model. Methods: Wistar-Han rats (n = 24) were fed a chow, a high-fat (HF) diet, or a high-fat/high-sucrose (HFS) for 24 weeks. OA was induced unilaterally 12 weeks after the diet onset by groove surgery, and compared to sham surgery or no surgical intervention (contralateral limb). Knee OA severity was determined by OARSI histopathology scoring system. At several timepoints monocyte populations were measured using flow cytometry, and joint macrophage response was determined via CD68 immunohistochemistry staining. Results: Groove surgery combined with HF or HFS diet resulted in higher OARSI scores, and both HF and HFS diet showed increased circulating intermediate monocytes compared to chow fed rats. Additionally, in the HFS group, minimal damage by sham surgery resulted in an increased OARSI score. HFS diet resulted in the largest metabolic dysregulation, synovial inflammation and increased CD68 staining in tibia epiphysis bone marrow. Conclusion: Obesogenic diets resulted in aggravated OA development, even with very minimal joint damage when combined with the sucrose/fat-rich diet. We hypothesize that diet-induced low-grade inflammation primes monocytes and macrophages in the blood, bone marrow, and synovium, resulting in joint damage when triggered by groove OA inducing surgery. When the metabolic dysregulation is larger, as observed here for the HFS diet, the surgical trigger required to induce joint damage may be smaller, or even redundant.

2.
Osteoarthritis Cartilage ; 28(5): 593-602, 2020 05.
Article in English | MEDLINE | ID: mdl-32222415

ABSTRACT

OBJECTIVE: Obesity is one of the greatest risk factors for osteoarthritis (OA) and evidence is accumulating that inflammatory mediators and innate immunity play an important role. The infrapatellar fat pad (IPFP) could be a potential local source of inflammatory mediators in the knee. Here, we combine surgical joint damage with high-fat feeding in mice to investigate inflammatory responses in the IPFP during OA development. DESIGN: Mice (n = 30) received either a low-fat diet (LFD), high-fat diet (HFD) for 18 weeks or switched diets (LFD > HFD) after 10 weeks. OA was induced by surgical destabilization of the medial meniscus (DMM), contralateral knees served as sham controls. An additional HFD-only group (n = 15) received no DMM. RESULTS: The most pronounced inflammation, characterized by macrophage crown-like structures (CLS), was found in HFD + DMM mice, CLS increased compared to HFD only (mean difference = 7.26, 95%CI [1.52-13.0]) and LFD + DMM (mean difference = 6.35, 95%CI [0.53-12.18). The M1 macrophage marker iNOS increased by DMM (ratio = 2.48, 95%CI [1.37-4.50]), while no change in M2 macrophage marker CD206 was observed. Fibrosis was minimal by HFD alone, but in combination with DMM it increased with 23.45% (95%CI [13.67-33.24]). CONCLUSIONS: These findings indicate that a high-fat diet alone does not trigger inflammation or fibrosis in the infrapatellar fat pad, but in combination with an extra damage trigger, like DMM, induces inflammation and fibrosis in the infrapatellar fat pad. These data suggest that HFD provides a priming effect on the infrapatellar fat pad and that combined actions bring the joint in a metabolic state of progressive OA.


Subject(s)
Adipose Tissue/pathology , Cartilage, Articular/pathology , Diet, Fat-Restricted , Diet, High-Fat , Knee Joint/pathology , Osteoarthritis, Knee/pathology , Osteophyte/pathology , Adipocytes/pathology , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Body Composition , Body Weight , Cholesterol/metabolism , Disease Susceptibility , Fibrosis , Insulin/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Meniscus/surgery , Mice , Phenotype , Synovitis/pathology
3.
Med Microbiol Immunol ; 208(3-4): 305-321, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30949763

ABSTRACT

Latent infection with cytomegalovirus (CMV) is thought to accelerate aging of the immune system. With age, influenza vaccine responses are impaired. Although several studies investigated the effect of CMV infection on antibody responses to influenza vaccination, this led to contradicting conclusions. Therefore, we investigated the relation between CMV infection and the antibody response to influenza vaccination by performing a systematic review and meta-analysis. All studies on the antibody response to influenza vaccination in association with CMV infection were included (n = 17). The following outcome variables were extracted: (a) the geometric mean titer pre-/post-vaccination ratio (GMR) per CMV serostatus group, and in addition (b) the percentage of subjects with a response per CMV serostatus group and (c) the association between influenza- and CMV-specific antibody titers. The influenza-specific GMR revealed no clear evidence for an effect of CMV seropositivity on the influenza vaccine response in young or old individuals. Meta-analysis of the response rate to influenza vaccination showed a non-significant trend towards a negative effect of CMV seropositivity. However, funnel plot analysis suggests that this is a consequence of publication bias. A weak negative association between CMV antibody titers and influenza antibody titers was reported in several studies, but associations could not be analyzed systematically due to the variety of outcome variables. In conclusion, by systematically integrating the available studies, we show that there is no unequivocal evidence that latent CMV infection affects the influenza antibody response to vaccination. Further studies, including the level of CMV antibodies, are required to settle on the potential influence of latent CMV infection on the influenza vaccine response.


Subject(s)
Antibody Formation , Cytomegalovirus Infections/immunology , Influenza Vaccines/immunology , Orthomyxoviridae/immunology , Virus Latency , Antibodies, Viral/blood , Cytomegalovirus/immunology , Cytomegalovirus Infections/virology , Humans , Immunosenescence , Influenza Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...