Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(6): e0252267, 2021.
Article in English | MEDLINE | ID: mdl-34097699

ABSTRACT

INTRODUCTION AND OBJECTIVES: There are no cardiovascular (CV) risk prediction models for Sri Lankans. Different risk prediction models not validated for Sri Lankans are being used to predict CV risk of Sri Lankans. We validated the WHO/ISH (SEAR-B) risk prediction charts prospectively in a population-based cohort of Sri Lankans. METHOD: We selected 40-64 year-old participants from the Ragama Medical Officer of Health (MOH) area in 2007 by stratified random sampling and followed them up for 10 years. Ten-year risk predictions of a fatal/non-fatal cardiovascular event (CVE) in 2007 were calculated using WHO/ISH (SEAR-B) charts with and without cholesterol. The CVEs that occurred from 2007-2017 were ascertained. Risk predictions in 2007 were validated against observed CVEs in 2017. RESULTS: Of 2517 participants, the mean age was 53.7 year (SD: 6.7) and 1132 (45%) were males. Using WHO/ISH chart with cholesterol, the percentages of subjects with a 10-year CV risk <10%, 10-19%, 20%-29%, 30-39%, ≥40% were 80.7%, 9.9%, 3.8%, 2.5% and 3.1%, respectively. 142 non-fatal and 73 fatal CVEs were observed during follow-up. Among the cohort, 9.4% were predicted of having a CV risk ≥20% and 8.6% CVEs were observed in the risk category. CVEs were within the predictions of WHO/ISH charts with and without cholesterol in both high (≥20%) and low(<20%) risk males, but only in low(<20%) risk females. The predictions of WHO/ISH charts, with-and without-cholesterol were in agreement in 81% of subjects (ĸ = 0.429; p<0.001). CONCLUSIONS: WHO/ISH (SEAR B) risk prediction charts with-and without-cholesterol may be used in Sri Lanka. Risk charts are more predictive in males than in females and for lower-risk categories. The predictions when stratifying into 2 categories, low risk (<20%) and high risk (≥20%), are more appropriate in clinical practice.


Subject(s)
Cardiovascular Diseases/etiology , Hypertension/etiology , Adult , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular System/metabolism , Cardiovascular System/pathology , Cholesterol/metabolism , Cross-Sectional Studies , Female , Heart Disease Risk Factors , Humans , Hypertension/metabolism , Hypertension/pathology , Longitudinal Studies , Male , Medical History Taking/methods , Middle Aged , Prevalence , Prospective Studies , Risk Factors , Sri Lanka , World Health Organization
2.
Environ Res ; 178: 108670, 2019 11.
Article in English | MEDLINE | ID: mdl-31472361

ABSTRACT

Exposure to benzene, toluene and p-, m-, o-xylene (BTX) was studied in 29 gas station attendants and 16 office workers in Sri Lanka. The aim of this study was to assess the exposure level and identify potential exposure mitigating measures. Pre- and post-shift samples of end-exhaled air were collected and analysed for BTX on a thermal desorption gas chromatography mass spectrometry system (TD-GC-MS). Urine was collected at the same timepoints and analysed for a metabolite of benzene, S-phenyl mercapturic acid (SPMA), using liquid chromatography-mass spectrometry (LC-MS). Environmental exposure was measured by personal air sampling and analysed by gas chromatography flame ionization detection (GC-FID). Median (range) breathing zone air concentrations were 609 (65.1-1960) µg/m3 for benzene and 746 (<5.0-2770) µg/m3 for toluene. Taking into account long working hours, 28% of the measured exposures exceeded the ACGIH threshold limit value (TLV) for an 8-h time-weighted average of 1.6 mg/m3 for benzene. Xylene isomers were not detected. End-exhaled air concentrations were significantly increased for gas station attendants compared to office workers (p < 0.005). The difference was 1-3-fold in pre-shift and 2-5-fold in post-shift samples. The increase from pre-to post-shift amounted to 5-15-fold (p < 0.005). Pre-shift BTX concentrations in end-exhaled air were higher in smokers compared to non-smokers (p < 0.01). Exposure due to self-reported fuel spills was related to enhanced exhaled BTX (p < 0.05). The same was found for sleeping at the location of the gas station between two work-shifts. Benzene in end-exhaled air was moderately associated with benzene in the breathing zone (r = 0.422; p < 0.001). Median creatinine-corrected S-phenyl mercapturic acid (SPMA) was similar in pre- and post-shift (2.40 and 3.02 µg/g) in gas station attendants but increased in office workers (from 0.55 to 1.07 µg/g). In conclusion, working as a gas station attendant leads to inhalation exposure and occasional skin exposure to BTX. Smoking was identified as the most important co-exposure. Besides taking preventive measure to reduce exposure, the reduction of working hours to 40 h per week is expected to decrease benzene levels below the current TLV.


Subject(s)
Air Pollutants, Occupational/analysis , Benzene , Occupational Exposure/statistics & numerical data , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Humans , Sri Lanka , Toluene/analysis , Xylenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...