Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(3): 3619-3631, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297579

ABSTRACT

Thin-film lithium niobate (TFLN) is a promising electro-optic (EO) photonics platform with high modulation bandwidth, low drive voltage, and low optical loss. However, EO modulation in TFLN is known to relax on long timescales. Instead, thermo-optic heaters are often used for stable biasing, but heaters incur challenges with cross-talk, high power, and low bandwidth. Here, we characterize the low-frequency (1 mHz to 1 MHz) EO response of TFLN modulators, investigate the root cause of EO relaxation and demonstrate methods to improve bias stability. We show that relaxation-related effects can enhance EO modulation across a frequency band spanning 1kHz to 20kHz in our devices - a counter-intuitive result that can confound measurement of half-wave voltage (V π) in TFLN modulators. We also show that EO relaxation can be slowed by more than 104-fold through control of the LN-metal interface and annealing, offering progress toward lifetime-stable EO biasing. Such robust EO biasing would enable applications for TFLN devices where cross-talk, power, and bias bandwidth are critical, such as quantum devices, high-density integrated photonics, and communications.

2.
Nat Commun ; 14(1): 11, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36599838

ABSTRACT

Bridging the "terahertz gap" relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m-1 with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ.

SELECTION OF CITATIONS
SEARCH DETAIL
...