Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1315: 342757, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38879205

ABSTRACT

BACKGROUND: Chlorinated paraffins (CPs) are industrial chemicals categorised as persistent organic pollutants because of their toxicity, persistency and tendency to long-range transport, bioaccumulation and biomagnification. Despite having been the subject of environmental attention for decades, analytical methods for CPs still struggle reaching a sufficient degree of accuracy. Among the issues negatively impacting the quantification of CPs, the unavailability of well-characterised standards, both as pure substances and as matrix (certified) reference materials (CRMs), has played a major role. The focus of this study was to provide a matrix CRM as quality control tool to improve the comparability of CPs measurement results. RESULTS: We present the process of certification of ERM®-CE100, the first fish reference material assigned with certified values for the mass fraction of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively). The certification was performed in accordance with ISO 17034:2016 and ISO Guide 35:2017, with the value assignment step carried out via an intercomparison of laboratories of demonstrated competence in CPs analysis and applying procedures based on different analytical principles. After confirmation of the homogeneity and stability of the CRM, two certified values were assigned for SCCPs, depending on the calibrants used: 31 ± 9 µg kg-1 and 23 ± 7 µg kg-1. The MCCPs certified value was established as 44 ± 17 µg kg-1. All assigned values are relative to wet weight in the CRM that was produced as a fish paste to enhance similarity to routine biota samples. SIGNIFICANCE AND NOVELTY: The fish tissue ERM-CE100 is the first matrix CRM commercially available for the analysis of CPs, enabling analytical laboratories to improve the accuracy and the metrological traceability of their measurements. The certified CPs values are based on results obtained by both gas and liquid chromatography coupled with various mass spectrometric techniques, offering thus a broad validity to laboratories employing different analytical methods and equipment.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , Reference Standards , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Paraffin/chemistry , Animals , Fishes
2.
Environ Sci Process Impacts ; 22(4): 908-917, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32048673

ABSTRACT

Volatile methylsiloxanes (VMS) have been identified as contaminants of emerging concern in aquatic systems. Here, we report on the presence of VMS in sediment and wastewater from Arctic regions in 2014 to 2016 and model their persistence in Adventfjorden in Longyearbyen, Svalbard. Total concentrations of VMS in sediment were dominated by D4 and D5 and ranged from 0.0024 to 1.7 ng g-1 at Svalbard (Longyearbyen), from 4.0 to 43 ng g-1 in Greenland (Nuuk) and from 0.19 to 21 ng g-1 in the Canadian Archipelago. Concentrations in wastewater samples from Svalbard ranged from 12 to 156 ng L-1. Large variability in reported values of the partition ratio between organic carbon and water (KOC) and enthalpy of sorption (ΔHOC; often estimated from enthalpy of phase change between octanol and water, ΔHOW) of VMS has resulted in high uncertainty in evaluating persistence in aquatic systems. We evaluated previously reported KOC and ΔHOC values from the literature in predicting measured VMS concentrations in sediment and wastewater in scenarios using a fugacity-based multimedia model for VMS concentrations in Svalbard. We tested two different model scenarios: (1) KOC and ΔHOW measurements for three cyclic VMS previously reported by Kozerski et al. (Environ. Toxicol. Chem., 2014, 33, 1937-1945) and Xu and Kropscott (Environ. Chem., 2014, 33, 2702-2710) and (2) the KOC and ΔHOC measurements from Panagopoulos et al. (Environ. Sci. Technol., 2015, 49, 12161-12168 and Environ. Sci. Technol. Lett., 2017, 4(6), 240-245). Concentrations of VMS in sediment predicted from concentrations in wastewater in scenario 2 were in good agreement with measured concentrations, whereas in scenario 1, predicted concentrations were 2 to 4 orders of magnitude lower. Such large discrepancies indicate that the differences in the predicted concentrations are more likely to be attributed to KOC and ΔHOC than to uncertainty in environmental parameters or emission rates.


Subject(s)
Siloxanes , Water Pollutants, Chemical , Arctic Regions , Canada , Environmental Monitoring , Geologic Sediments , Wastewater
3.
Environ Sci Technol ; 51(1): 401-409, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27997187

ABSTRACT

Cyclic volatile methyl siloxanes (cVMS) are emitted to aquatic environments with wastewater effluents. Here, we evaluate the environmental behavior of three cVMS compounds (octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6)) in a high latitude lake (Storvannet, 70°N 23°E), experiencing intermittent wastewater emissions and high latitude environmental conditions (low temperatures and seasonal ice cover). Measured cVMS concentrations in lake water were below detection limits in both March and June 2014. However, mean concentrations in sediments were 207 ± 30, 3775 ± 973 and 848 ± 211 ng g-1 organic carbon for D4, D5 and D6, respectively. To rationalize measurements, a fugacity-based model for lakes (QWASI) was parametrized for Storvannet. The key removal process for cVMS from the lake was predicted to be advection due to the low hydraulic retention time of the lake, followed by volatilization. Predicted cVMS behavior was highly sensitive to the partition coefficient between organic carbon and water (KOC) and its temperature dependence. Predictions indicated lower overall persistence with decreasing temperature due to enhanced partitioning from sediments to water. Inverse modeling to predict steady-state emissions from cVMS concentrations in sediment provided unrealistically high emissions, when evaluated against measured concentrations in sewage. However, high concentrations of cVMS in sediment and low concentrations in water could be explained via a hypothetical dynamic emission scenario consistent with combined sewer overflows. The study illustrates the importance of considering compound-specific behavior of emerging contaminants that may differ from legacy organic contaminants.


Subject(s)
Lakes , Siloxanes , Carbon , Environmental Monitoring , Uncertainty , Water , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...