Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 281: 130736, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34020198

ABSTRACT

Intensive anthropogenic pressure such as high inputs of nutrients and pesticides severely threaten most European water bodies. Small catchments ≤10 km2 are not monitored under the Water Framework Directive but play an important role in freshwater ecosystems. The high complexity in seasonal and spatial dynamics require more than a one-size-fits-all approach in water quality monitoring. Often located in rural areas with a high agricultural activity, small catchments often carry high amounts of nutrients, pesticides and their transformation products affecting drinking water resources. With a low-cost approach of a monthly sampling campaign over the course of one year combined with meaningful indicators for potential pollution sources within the catchment this study could elucidate catchment dynamics and two hotspots for pesticides and nutrients. Two different groups of pesticides were observed (I) pesticides on long-term use which were applied in high amounts over the last decades (e.g., chloridazon and its transformation products) and (II) pesticides on short-term use, newly introduced into the market. Especially transformation products of pesticides from group (I) together with nitrate showed a steady release from two fields into the receiving water bodies over the year, probably being stored in the soil layers over the years of application slowly leaching out. Pesticides from group (II) showed a strong seasonality, released from another hotspot area probably due to run-off shortly after application. Streamlining this knowledge into targeted measures and an agile monitoring strategy for the respective catchments may allow a sustainable improvement of water quality and a better ecosystem protection.


Subject(s)
Pesticides , Water Pollutants, Chemical , Agriculture , Ecosystem , Environmental Monitoring , Lakes , Nutrients , Pesticides/analysis , Seasons , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 686: 75-89, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31176825

ABSTRACT

Nowadays, micropollutants such as pharmaceuticals, pesticides and personal care products can be found ubiquitously in the anthropogenically influenced water cycle. As micropollutants have virtually no natural background concentrations they are significantly more sensitive in detecting processes and flow paths than classic inorganic tracers and indicators and at the same time they are often highly source specific. Therefore, using micropollutants as environmental indicators for anthropogenic activities is a common and frequently applied method today. As they interact in many ways with environmental matrices they can be used for source apportionment as well as to estimate flow paths and residence times in waterbodies. This review gives a systematic overview over the large variety of micropollutants used as indicators in the aquatic environment over the last decades together with the prerequisites on their use. Their application is subdivided into their qualitative (compound presence or absence) and quantitative (volume flows) use and shows the numerous possibilities from gaining basic information on the water regime up to advanced applications such as wastewater-based epidemiology.

3.
Sci Total Environ ; 563-564: 587-92, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27176930

ABSTRACT

The ability of lake sediment cores to store long-term anthropogenic pollution establishes them as natural archives. In this study, we focus on the influence of copper shale mining and smelting in the Mansfeld area of Germany, using the depth profiles of two sediment cores from Lake Süßer See. The sediment cores provide a detailed chronological deposition history of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the studied area. Theisen sludge, a fine-grained residue from copper shale smelting, reaches the lake via deflation by wind or through riverine input; it is assumed to be the main source of pollution. To achieve the comparability of absolute contaminant concentrations, we calculated the influx of contaminants based on the sedimentation rate. Compared to the natural background concentrations, PAHs are significantly more enriched than heavy metals. They are therefore more sensitive and selective for source apportionment. We suggest two diagnostic ratios of PAHs to distinguish between Theisen sludge and its leachate: the ratio fluoranthene to pyrene ~2 and the ratio of PAH with logKOW<5.7 to PAH with a logKOW>5.7 converging to an even lower value than 2.3 (the characteristic of Theisen sludge) to identify the particulate input in lake environments.


Subject(s)
Geologic Sediments/analysis , Lakes/chemistry , Metallurgy , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Germany
SELECTION OF CITATIONS
SEARCH DETAIL
...