Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22269243

ABSTRACT

SARS-CoV-2 Delta and Omicron strains are the most globally relevant variants of concern (VOCs). While individuals infected with Delta are at risk to develop severe lung disease1, Omicron infection causes less severe disease, mostly upper respiratory symptoms2,3. The question arises whether rampant spread of Omicron could lead to mass immunization, accelerating the end of the pandemic. Here we show that infection with Delta, but not Omicron, induces broad immunity in mice. While sera from Omicron-infected mice only neutralize Omicron, sera from Delta-infected mice are broadly effective against Delta and other VOCs, including Omicron. This is not observed with the WA1 ancestral strain, although both WA1 and Delta elicited a highly pro-inflammatory cytokine response and replicated to similar titers in the respiratory tracts and lungs of infected mice as well as in human airway organoids. Pulmonary viral replication, pro-inflammatory cytokine expression, and overall disease progression are markedly reduced with Omicron infection. Analysis of human sera from Omicron and Delta breakthrough cases reveals effective cross-variant neutralization induced by both viruses in vaccinated individuals. Together, our results indicate that Omicron infection enhances preexisting immunity elicited by vaccines, but on its own may not induce broad, cross-neutralizing humoral immunity in unvaccinated individuals.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21267557

ABSTRACT

Pregnancy confers unique immune responses to infection and vaccination across gestation. To date, there is limited data comparing vaccine versus infection-induced nAb to COVID-19 variants in mothers during pregnancy. We analyzed paired maternal and cord plasma samples from 60 pregnant individuals. Thirty women vaccinated with mRNA vaccines were matched with 30 naturally infected women by gestational age of exposure. Neutralization activity against the five SARS-CoV-2 Spike sequences was measured by a SARS-CoV-2 pseudotyped Spike virion assay. Effective nAbs against SARS-CoV-2 were present in maternal and cord plasma after both infection and vaccination. Compared to wild type or Alpha variant Spike, these nAbs were less effective against the Kappa, Delta, and Mu Spike variants. Vaccination during the third trimester induced higher nAb levels at delivery than infection during the third trimester. In contrast, vaccine-induced nAb levels were lower at the time of delivery compared to infection during the first trimester. The transfer ratio (cord nAb level/maternal nAb level) was greatest in mothers vaccinated in the second trimester. SARS-CoV-2 vaccination or infection in pregnancy elicit effective nAbs with differing neutralization kinetics that is impacted by gestational time of exposure. Vaccine induced neutralizing activity was reduced against the Delta, Mu, and Kappa variants. Graphic abstract O_FIG O_LINKSMALLFIG WIDTH=155 HEIGHT=200 SRC="FIGDIR/small/21267557v1_ufig1.gif" ALT="Figure 1"> View larger version (34K): org.highwire.dtl.DTLVardef@4225dborg.highwire.dtl.DTLVardef@c35b5borg.highwire.dtl.DTLVardef@1a2d180org.highwire.dtl.DTLVardef@6863c2_HPS_FORMAT_FIGEXP M_FIG C_FIG

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-464152

ABSTRACT

Blood clots are a central feature of coronavirus disease-2019 (COVID-19) and can culminate in pulmonary embolism, stroke, and sudden death. However, it is not known how abnormal blood clots form in COVID-19 or why they occur even in asymptomatic and convalescent patients. Here we report that the Spike protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the blood coagulation factor fibrinogen and induces structurally abnormal blood clots with heightened proinflammatory activity. SARS-CoV-2 Spike virions enhanced fibrin-mediated microglia activation and induced fibrinogen-dependent lung pathology. COVID-19 patients had fibrin autoantibodies that persisted long after acute infection. Monoclonal antibody 5B8, targeting the cryptic inflammatory fibrin epitope, inhibited thromboinflammation. Our results reveal a procoagulant role for the SARS-CoV-2 Spike and propose fibrin-targeting interventions as a treatment for thromboinflammation in COVID-19. One-Sentence SummarySARS-CoV-2 spike induces structurally abnormal blood clots and thromboinflammation neutralized by a fibrin-targeting antibody.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-443888

ABSTRACT

While mRNA vaccines are proving highly efficacious against SARS-CoV-2, it is important to determine how booster doses and prior infection influence the immune defense they elicit, and whether they protect against variants. Focusing on the T cell response, we conducted a longitudinal study of infection-naive and COVID-19 convalescent donors before vaccination and after their first and second vaccine doses, using a high-parameter CyTOF analysis to phenotype their SARS-CoV-2-specific T cells. Vaccine-elicited spike-specific T cells responded similarly to stimulation by spike epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms of cell numbers and phenotypes. In infection-naive individuals, the second dose boosted the quantity and altered the phenotypic properties of SARS-CoV-2-specific T cells, while in convalescents the second dose changed neither. Spike-specific T cells from convalescent vaccinees differed strikingly from those of infection-naive vaccinees, with phenotypic features suggesting superior long-term persistence and ability to home to the respiratory tract including the nasopharynx. These results provide reassurance that vaccine-elicited T cells respond robustly to emerging viral variants, confirm that convalescents may not need a second vaccine dose, and suggest that vaccinated convalescents may have more persistent nasopharynx-homing SARS-CoV-2-specific T cells compared to their infection-naive counterparts.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21250054

ABSTRACT

Although T cells are likely players in SARS-CoV-2 immunity, little is known about the phenotypic features of SARS-CoV-2-specific T cells associated with recovery from severe COVID-19. We analyzed T cells from longitudinal specimens of 34 COVID-19 patients with severities ranging from mild (outpatient) to critical culminating in death. Relative to patients that succumbed, individuals that recovered from severe COVID-19 harbored elevated and increasing numbers of SARS-CoV-2-specific T cells capable of homeostatic proliferation. In contrast, fatal COVID-19 displayed elevated numbers of SARS-CoV-2-specific regulatory T cells and a time-dependent escalation in activated bystander CXCR4+ T cells. Together with the demonstration of increased proportions of inflammatory CXCR4+ T cells in the lungs of severe COVID-19 patients, these results support a model whereby lung-homing T cells activated through bystander effects contribute to immunopathology, while a robust, non-suppressive SARS-CoV-2-specific T cell response limits pathogenesis and promotes recovery from severe COVID-19. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=197 SRC="FIGDIR/small/21250054v2_ufig1.gif" ALT="Figure 1"> View larger version (73K): org.highwire.dtl.DTLVardef@c82ec8org.highwire.dtl.DTLVardef@778d7forg.highwire.dtl.DTLVardef@ea9130org.highwire.dtl.DTLVardef@1e21805_HPS_FORMAT_FIGEXP M_FIG C_FIG HIGHLIGHTSO_LIDysfunctional spike-specific T cells are characteristic of severe COVID-19 C_LIO_LISpike-specific CD127+ Th1 cells are increased in survivors of severe COVID-19 C_LIO_LISpike-specific Tregs and IL6+ CD8+ T cells are increased in fatal COVID-19 C_LIO_LIEscalation of activated lung-homing CXCR4+ T cells associates with fatal COVID-19 C_LI BRIEF SUMMARYBy conducting CyTOF on total and SARS-CoV-2-specific T cells from longitudinal specimens spanning the entire spectrum of COVID-19 diseases, Neidleman et al. demonstrate that spike-specific Th1 cells capable of IL7-dependent homeostatic proliferation predict survival from severe COVID-19, while Tregs and IL6+ CD8+ T cells recognizing spike predict fatal outcome. Fatal COVID-19 is characterized by escalating activation of bystander CXCR4+ T cells in the lungs. Boosting SARS-CoV-2-specific CD4+ T effector responses while diminishing CXCR4-mediated homing may help recovery from severe disease.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-427501

ABSTRACT

The spread of SARS-CoV-2 has led to a devastating pandemic, with infections resulting in a range of symptoms collectively known as COVID-19. The full repertoire of human tissues and organs susceptible to infection is an area of active investigation, and some studies have implicated the reproductive system. The effects of COVID-19 on human reproduction remain poorly understood, and particularly the impact on early embryogenesis and establishment of a pregnancy are not known. In this work, we explore the susceptibility of early human embryos to SARS-CoV-2 infection. We note that ACE2 and TMPRSS2, two canonical cell entry factors for SARS-CoV-2, are co-expressed in cells of the trophectoderm in blastocyst-stage preimplantation embryos. Using fluorescent reporter virions pseudotyped with Spike (S) glycoprotein from SARS-CoV-2, we observe robust infection of trophectoderm cells, and this permissiveness could be attenuated with blocking antibodies targeting S or ACE2. When exposing human blastocysts to the live, fully infectious SARS-CoV-2, we detected cases of infection that compromised embryo health. Therefore, we identify a new human target tissue for SARS-CoV-2 with potential medical implications for reproductive health during the COVID-19 pandemic and its aftermath.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-138826

ABSTRACT

Convalescing COVID-19 patients mount robust T cell responses against SARS-CoV-2, suggesting an important role for T cells in viral clearance. To date, the phenotypes of SARS-CoV-2-specific T cells remain poorly defined. Using 38-parameter CyTOF, we phenotyped longitudinal specimens of SARS-CoV-2-specific CD4+ and CD8+ T cells from nine individuals who recovered from mild COVID-19. SARS-CoV-2-specific CD4+ T cells were exclusively Th1 cells, and predominantly Tcm with phenotypic features of robust helper function. SARS-CoV-2-specific CD8+ T cells were predominantly Temra cells in a state of less terminal differentiation than most Temra cells. Subsets of SARS-CoV-2-specific T cells express CD127, can homeostatically proliferate, and can persist for over two months. Our results suggest that long-lived and robust T cell immunity is generated following natural SARS-CoV-2 infection, and support an important role for SARS-CoV-2-specific T cells in host control of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...