Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Thorac Oncol ; 12(8): 1268-1279, 2017 08.
Article in English | MEDLINE | ID: mdl-28483607

ABSTRACT

INTRODUCTION: Proinflammatory cytokine interleukin-17A (IL-17A) is overexpressed in a subset of patients with lung cancer. We hypothesized that IL-17A promotes a protumorigenic inflammatory phenotype and inhibits antitumor immune responses. METHODS: We generated bitransgenic mice expressing a conditional IL-17A allele along with conditional KrasG12D and performed immune phenotyping of mouse lungs, a survival analysis, and treatment studies with antibodies either blocking programmed cell death 1 (PD-1) or IL-6 or depleting neutrophils. To support the preclinical findings, we analyzed human gene expression data sets and immune profiled patient lung tumors. RESULTS: Tumors in IL-17:KrasG12D mice grew more rapidly, resulting in a significantly shorter survival as compared with that of KrasG12D mice. IL-6, granulocyte colony-stimulating factor (G-CSF), milk fat globule-EGF factor 8 protein, and C-X-C motif chemokine ligand 1 were increased in the lungs of IL17:Kras mice. Time course analysis revealed that levels of tumor-associated neutrophils were significantly increased, and lymphocyte recruitment was significantly reduced in IL17:KrasG12D mice as compared with in KrasG12D mice. In therapeutic studies PD-1 blockade was not effective in treating IL-17:KrasG12D tumors. In contrast, blocking IL-6 or depleting neutrophils with an anti-Ly-6G antibody in the IL17:KrasG12D tumors resulted in a clinical response associated with T-cell activation. In tumors from patients with lung cancer with KRAS mutation we found a correlation between higher levels of IL-17A and colony- stimulating factor 3 and a significant correlation among high neutrophil and lower T-cell numbers. CONCLUSIONS: Here we have shown that an increase in a single cytokine, IL-17A, without additional mutations can promote lung cancer growth by promoting inflammation, which contributes to resistance to PD-1 blockade and sensitizes tumors to cytokine and neutrophil depletion.


Subject(s)
Interleukin-17/biosynthesis , Lung Neoplasms/immunology , Neutrophils/immunology , Programmed Cell Death 1 Receptor/immunology , Animals , Disease Progression , Gene Expression , Humans , Interleukin-17/immunology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Transgenic , Mutation , Neutrophils/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/immunology
2.
Cancer Discov ; 7(8): 852-867, 2017 08.
Article in English | MEDLINE | ID: mdl-28408401

ABSTRACT

Effective therapies for non-small cell lung cancer (NSCLC) remain challenging despite an increasingly comprehensive understanding of somatically altered oncogenic pathways. It is now clear that therapeutic agents with potential to impact the tumor immune microenvironment potentiate immune-orchestrated therapeutic benefit. Herein, we evaluated the immunoregulatory properties of histone deacetylase (HDAC) and bromodomain inhibitors, two classes of drugs that modulate the epigenome, with a focus on key cell subsets that are engaged in an immune response. By evaluating human peripheral blood and NSCLC tumors, we show that the selective HDAC6 inhibitor ricolinostat promotes phenotypic changes that support enhanced T-cell activation and improved function of antigen-presenting cells. The bromodomain inhibitor JQ1 attenuated CD4+FOXP3+ T regulatory cell suppressive function and synergized with ricolinostat to facilitate immune-mediated tumor growth arrest, leading to prolonged survival of mice with lung adenocarcinomas. Collectively, our findings highlight the immunomodulatory effects of two epigenetic modifiers that, together, promote T cell-mediated antitumor immunity and demonstrate their therapeutic potential for treatment of NSCLC.Significance: Selective inhibition of HDACs and bromodomain proteins modulates tumor-associated immune cells in a manner that favors improved T-cell function and reduced inhibitory cellular mechanisms. These effects facilitated robust antitumor responses in tumor-bearing mice, demonstrating the therapeutic potential of combining these epigenetic modulators for the treatment of NSCLC. Cancer Discov; 7(8); 852-67. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 783.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Histone Deacetylase Inhibitors/administration & dosage , Hydroxamic Acids/administration & dosage , Pyrimidines/administration & dosage , Aged , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Female , Histone Deacetylases/genetics , Histone Deacetylases/immunology , Humans , Hydroxamic Acids/adverse effects , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Middle Aged , Pyrimidines/adverse effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...