Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(10): 15538-15566, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34609836

ABSTRACT

Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.


Subject(s)
Nanoparticles , Nanostructures , Circular Dichroism , Nanotechnology
2.
J Phys Chem Lett ; 11(3): 1170-1177, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31967479

ABSTRACT

Understanding nanoscale protein conformational changes at solid-liquid interfaces is critical for predicting how proteins will impact the performance of biomaterials in vivo. Crowding is an important contributor to conformational stability. Here we apply single-molecule high resolution imaging with photobleaching to directly measure dye-conjugated fibronectin's unfolding in varying conditions of crowding with human serum albumin on aminosilanized glass. Using this approach, we identify serum albumin's crowding mechanism. We find that fibronectin achieves larger degrees of unfolding when not crowded by coadsorbed serum albumin. Serum albumin does not as effectively constrict fibronectin's conformation if it is sequentially, rather than simultaneously, introduced, suggesting that serum albumin's crowding mechanism is dependent on its ability to sterically block fibronectin's unfolding during the process of adsorption. Because fibronectin's conformation is dependent on interfacial macromolecular crowding under in vitro conditions, it is important to consider the role of in vivo crowding on protein activity.


Subject(s)
Fibronectins/chemistry , Serum Albumin/chemistry , Fibronectins/metabolism , Glass/chemistry , Humans , Nanotechnology/methods , Protein Stability , Protein Unfolding , Serum Albumin/metabolism , Surface Properties
3.
Science ; 365(6460): 1475-1478, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31604278

ABSTRACT

Plasmon-coupled circular dichroism has emerged as a promising approach for ultrasensitive detection of biomolecular conformations through coupling between molecular chirality and surface plasmons. Chiral nanoparticle assemblies without chiral molecules present also have large optical activities. We apply single-particle circular differential scattering spectroscopy coupled with electron imaging and simulations to identify both structural chirality of plasmonic aggregates and plasmon-coupled circular dichroism induced by chiral proteins. We establish that both chiral aggregates and just a few proteins in interparticle gaps of achiral assemblies are responsible for the ensemble signal, but single nanoparticles do not contribute. We furthermore find that the protein plays two roles: It transfers chirality to both chiral and achiral plasmonic substrates, and it is also responsible for the chiral three-dimensional assembly of nanorods. Understanding these underlying factors paves the way toward sensing the chirality of single biomolecules.


Subject(s)
Circular Dichroism , Nanotubes/chemistry , Protein Conformation , Serum Albumin, Bovine/chemistry , Cryoelectron Microscopy , Gold , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...