Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 653: 123892, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38350499

ABSTRACT

Monoclonal antibodies (mAbs) administered intranasally as dry powders can be potentially applied for the treatment or pre-exposure prevention of viral infections in the upper respiratory tract. However, a method to transform the mAbs from liquid to dry powders suitable for intranasal administration and a device that can spray the dry powders to the desired region of the nasal cavity are needed to fully realize the potentials of the mAbs. Herein, we report that thin-film freeze-dried mAb powders can be sprayed into the posterior nasal cavity using Aptar Pharma's Unidose (UDS) Powder Nasal Spray System. AUG-3387, a human-derived mAb that neutralizes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was used in the present study. First, we prepared thin-film freeze-dried AUG-3387 powders (i.e., TFF AUG-3387 powders) from liquid formulations containing different levels of mAbs. The TFF AUG-3387 powder with the highest solid content (i.e., TFF AUG-3387C) was then chosen for further characterization, including the evaluation of the plume geometry, spray pattern, and particle size distribution after the powder was sprayed using the UDS Powder Nasal Spray. Finally, the deposition patterns of the TFF AUG-3387C powder sprayed using the UDS Powder delivery system were studied using 3D-printed nasal replica casts based on the CT scans of an adult and a child. It is concluded that it is feasible to intranasally deliver mAbs as dry powders by transforming the mAbs into dry powders using thin-film freeze-drying and then spraying the powder using a powder nasal spray system.


Subject(s)
Antibodies, Monoclonal , Nasal Sprays , Adult , Child , Humans , Administration, Intranasal , Powders , Chemistry, Pharmaceutical/methods , Freeze Drying , Particle Size , Dry Powder Inhalers , Administration, Inhalation , Aerosols
2.
Pharmaceutics ; 16(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276522

ABSTRACT

The journal retracts the article, "Poly (N-vinylcaprolactam-grafted-sodium alginate) Based Injectable pH/Thermo Responsive In Situ Forming Depot Hy-drogels for Prolonged Controlled Anticancer Drug Delivery; In Vitro, In Vivo Characterization and Toxicity Evaluation" [...].

3.
Int J Pharm ; 640: 122990, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37127138

ABSTRACT

Intranasal vaccination by directly applying a vaccine dry powder is appealing. However, a method that can be used to transform a vaccine from a liquid to a dry powder and a device that can be used to administer the powder to the desired region(s) of the nasal cavity are critical for successful intranasal vaccination. In the present study, using a model vaccine that contains liposomal monophosphoryl lipid A and QS-21 adjuvant (AdjLMQ) and ovalbumin (OVA) as a model antigen, it was shown that thin-film freeze-drying can be applied to convert the liquid vaccine containing sucrose at a sucrose to lipid ratio of 15:1 (w/w) into dry powders, in the presence or absence of carboxymethyl cellulose sodium salt (CMC) as a mucoadhesive agent. Ultimately, the thin-film freeze-dried AdjLMQ/OVA vaccine powder containing 1.9% (w/w) of CMC (i.e., TFF AdjLMQ/OVA/CMC1.9% powder) was selected for additional evaluation because the TFF AdjLMQ/OVA/CMC1.9% powder was mucoadhesive and maintained the integrity of the antigen and the physical properties of the vaccine. Compared to the TFF AdjLMQ/OVA powder that did not contain CMC, the TFF AdjLMQ/OVA/CMC1.9% powder had a lower moisture content and a higher glass transition temperature. In addition, the TFF AdjLMQ/OVA/CMC1.9% thin films were relatively thicker than the TFF AdjLMQ/OVA thin films without CMC. When sprayed with Aptar Pharma's Unidose Powder Nasal Spray System (UDSP), the TFF AdjLMQ/OVA powder and the TFF AdjLMQ/OVA/CMC1.9% powder generated similar particle size distribution curves, spray patterns, and plume geometries. Importantly, after the TFF AdjLMQ/OVA/CMC1.9% powder was sprayed with the UDSP nasal device, the integrity of the OVA antigen and the AdjLMQ liposomes did not change. Finally, a Taguchi L4 orthogonal array was applied to identify the optimal parameters for using the UDSP device to deliver the TFF AdjLMQ/OVA/CMC1.9% powder to the middle and lower turbinate and the nasopharynx regions in both adult and child nasal replica casts. Results from this study showed that it is feasible to apply the thin-film freeze-drying technology to transform a nasal vaccine candidate from liquid to a dry powder and then use the UDSP nasal device to deliver the vaccine powder to the desired regions in the nasal cavity for intranasal vaccination.


Subject(s)
Vaccines , Humans , Child , Powders , Feasibility Studies , Administration, Intranasal , Vaccination , Freeze Drying , Antigens , Ovalbumin , Particle Size
4.
Eur J Pharm Sci ; 187: 106470, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37207942

ABSTRACT

Clofazimine (CFZ) is an important component of the World Health Organization's (WHO) recommended all-oral drug regimen for treatment of multi-drug resistant tuberculosis (MDR-TB). However, the lack of a dividable oral dosage form has limited the use of the drug in pediatric populations, who may require lowering of the dose to reduce the likelihood of adverse drug events. In this study, pediatric-friendly CFZ mini-tablets were prepared from micronized powder via direct compression. Rapid disintegration and maximized dissolution in GI fluids was achieved using an iterative formulation design process. Pharmacokinetic (PK) parameters of the optimized mini-tablets were obtained in Sprague-Dawley rats and compared against an oral suspension of micronized CFZ particles to examine the effect of processing and formulation on the oral absorption of the drug. Differences in maximum concentration and area under the curve between the two formulations were non-significant at the highest dosing level tested. Variability between rats prevented bioequivalence from being determined according to guidelines outlined by the Food and Drug Administration (FDA). These studies provide an important proof-of-concept for an alternative, low-cost formulation and processing approach for the oral delivery of CFZ in manner that is suitable for children as young as 6 months of age.


Subject(s)
Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Child , Animals , Rats , Clofazimine/therapeutic use , Rats, Sprague-Dawley , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy , Tablets
5.
Pharmaceutics ; 14(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36559062

ABSTRACT

Niclosamide is an FDA-approved anthelmintic that is being studied in clinical trials as a chemotherapeutic and broad-spectrum antiviral. Additionally, several other applications are currently in the preclinical stage. Unfortunately, niclosamide is a poorly water soluble molecule, with reduced oral bioavailability, which hinders its use for new indications. Moreover, niclosamide is a poor glass former; in other words, the molecule has a high tendency to recrystallize, and it is virtually impossible to generate a stable amorphous solid employing the neat molecule. Previously, our group reported the development of an amorphous solid dispersion (ASD) of niclosamide (niclosamide ASD) that generates nanoparticles during its dissolution, not only increasing niclosamide's apparent solubility from 6.6 ± 0.4 to 481.7 ± 22.2 µg/mL in fasted state simulated intestinal fluid (FaSSIF) but also its oral bioavailability 2.6-fold in Sprague-Dawley rats after being administered as a suspension. Nevertheless, niclosamide ASD undergoes recrystallization in acidic media, and an enteric oral dosage form is needed for its translation into the clinic. In this work, we further characterized the nanoparticles that generated during the dissolution of the niclosamide ASD. Cryogenic transmission electron microscopy (Cryo-TEM) and wide-angle X-ray scattering (WAXS) revealed that the nanoparticles were amorphous and had a particle size of ~150 nm. The oral dosage forms of niclosamide ASD were formulated using commercial enteric capsules (Capsuline® and EudracapTM) and as enteric-coated tablets. The enteric dosage forms were tested using pH-shift dissolution and acid-uptake tests, using the USP type II dissolution apparatus and the disintegration apparatus, respectively. The capsules exhibited a higher percentage of weight gain, and visual rupture of the Capsuline capsules was observed. Eudracap capsules protected the formulation from the acidic media, but polymer gelling and the formation of a nondispersible plug were noted during dissolution testing. In contrast, enteric-coated tablets protected the formulation from acid ingress and maintained the performance of niclosamide ASD granules during dissolution in FaSSIF media. These enteric-coated tablets were administered to beagle dogs at a niclosamide dose of 75 mg/kg, resulting in plasma concentrations of niclosamide higher than those reported in the literature using solubilized niclosamide at a higher dose (i.e., 100 mg/kg). In summary, an enteric oral dosage form of niclosamide ASD was formulated without hindering the generation of nanoparticles while maintaining the increase in the niclosamide's apparent solubility. The enteric-coated tablets successfully increased the niclosamide plasma levels in dogs when compared to a niclosamide solution prepared using organic solvents.

6.
Antimicrob Agents Chemother ; 66(9): e0018622, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35943265

ABSTRACT

Tuberculosis (TB) remains a major cause of morbidity and mortality, particularly in low- and middle-income countries where access to health care workers, cold-chain storage, and sterile water sources may be limited. Inhaled drug delivery is a promising alternative to systemic delivery of antimycobacterial drugs, as it enables rapid achievement of high infection-site drug concentrations. The off-patent drug clofazimine (CFZ) may be particularly suitable for this route, given its known systemic toxicities. In this study, micronized CFZ particles produced by air jet milling were assessed for shelf-stability, pharmacokinetics, and anti-TB efficacy by the oral and pulmonary routes in BALB/c mice. Intratracheal instillation of micronized CFZ particles produced several-fold higher lung concentrations after a single 30 mg/kg dose compared to delivery via oral gavage, and faster onset of bactericidal activity was observed in lungs of mice with chronic Mycobacterium tuberculosis infection compared to the oral route. Both infection status and administration route affected the multidose pharmacokinetics (PK) of micronized CFZ. Increased lung and spleen accumulation of the drug after pulmonary administration was noted in infected mice compared to naive mice, while the opposite trend was noted in the oral dosing groups. The infection-dependent PK of inhaled micronized CFZ may point to a role of macrophage trafficking in drug distribution, given the intracellular-targeting nature of the formulation. Lastly, air jet milled CFZ exhibited robustness to storage-induced chemical degradation and changes in aerosol performance, thereby indicating the suitability of the formulation for treatment of TB in regions with limited cold chain supply.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Clofazimine/pharmacology , Mice , Mice, Inbred BALB C , Tuberculosis/drug therapy , Water
7.
Pharmaceutics ; 14(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35631636

ABSTRACT

This study was aimed to develop novel in situ forming gels based on N-vinylcaprolactam, sodium alginate, and N,N-methylenebisacrylamide. The in situ Poly (NVRCL-g-NaAlg) gels were developed using the cold and free radical polymerization method. The structure formation, thermal stability, and porous nature of gels was confirmed by FTIR, NMR, DSC, TGA, and SEM. The tunable gelation temperature was evaluated by tube titling and rheological analysis. Optical transmittance showed that all formulations demonstrated phase transition around 33 °C. The swelling and release profile showed that gels offered maximum swelling and controlled 5-FU release at 25 °C and pH (7.4), owing to a relaxed state. Porosity and mesh size showed an effect on swelling and drug release. The in vitro degradation profile demonstrated a controlled degradation rate. An MTT assay confirmed that formulations are safe tested against Vero cells. In vitro cytotoxicity showed that 5-FU loaded gels have controlled cytotoxic potential against HeLa and MCF-7 cells (IC50 = 39.91 µg/mL and 46.82 µg/mL) compared to free 5-FU (IC50 = 50.52 µg/mL and 53.58 µg/mL). Histopathological study demonstrated no harmful effects of gels on major organs. The in vivo bioavailability in rabbits showed a controlled release in gel form (Cmax, 1433.59 ± 45.09 ng/mL) compared to a free drug (Cmax, 2263.31 ± 13.36 ng/mL) after the subcutaneous injection.

8.
Pharmaceutics ; 13(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34371741

ABSTRACT

Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.

9.
Int J Pharm ; 603: 120701, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33989748

ABSTRACT

In this work, we have developed and tested a dry powder form of niclosamide made by thin-film freezing (TFF) and administered it by inhalation to rats and hamsters to gather data about its toxicology and pharmacokinetics. Niclosamide, a poorly water-soluble drug, is an interesting drug candidate because it was approved over 60 years ago for use as an anthelmintic medication, but recent studies demonstrated its potential as a broad-spectrum antiviral with pharmacological effect against SARS-CoV-2 infection. TFF was used to develop a niclosamide inhalation powder composition that exhibited acceptable aerosol performance with a fine particle fraction (FPF) of 86.0% and a mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of 1.11 µm and 2.84, respectively. This formulation not only proved to be safe after an acute three-day, multi-dose tolerability and exposure study in rats as evidenced by histopathology analysis, and also was able to achieve lung concentrations above the required IC90 levels for at least 24 h after a single administration in a Syrian hamster model. To conclude, we successfully developed a niclosamide dry powder inhalation that overcomes niclosamide's limitation of poor oral bioavailability by targeting the drug directly to the primary site of infection, the lungs.


Subject(s)
COVID-19 , Niclosamide , Administration, Inhalation , Aerosols , Animals , Cricetinae , Dry Powder Inhalers , Freezing , Humans , Particle Size , Powders , Rats , SARS-CoV-2
10.
PLoS One ; 16(2): e0246803, 2021.
Article in English | MEDLINE | ID: mdl-33571320

ABSTRACT

Niclosamide (NIC) has demonstrated promising in vitro antiviral efficacy against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Though NIC is already FDA-approved, administration of the currently available oral formulation results in systemic drug levels that are too low for the inhibition of SARS-CoV-2. We hypothesized that the co-formulation of NIC with an endogenous protein, human lysozyme (hLYS), could enable the direct aerosol delivery of the drug to the respiratory tract as an alternative to oral delivery, thereby effectively treating COVID-19 by targeting the primary site of SARS-CoV-2 acquisition and spread. To test this hypothesis, we engineered and optimized composite particles containing NIC and hLYS suitable for delivery to the upper and lower airways via dry powder inhaler, nebulizer, and nasal spray. The novel formulation demonstrates potent in vitro and in vivo activity against two coronavirus strains, MERS-CoV and SARS-CoV-2, and may offer protection against methicillin-resistance staphylococcus aureus pneumonia and inflammatory lung damage occurring secondary to SARS-CoV-2 infections. The suitability of the formulation for all stages of the disease and low-cost development approach will ensure rapid clinical development and wide-spread utilization.


Subject(s)
Antiviral Agents/administration & dosage , Coronavirus Infections/drug therapy , Muramidase/administration & dosage , Niclosamide/administration & dosage , Administration, Inhalation , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cell Line , Drug Compounding , Drug Delivery Systems/instrumentation , Dry Powder Inhalers , Humans , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/drug effects , Muramidase/pharmacology , Muramidase/therapeutic use , Nasal Sprays , Niclosamide/pharmacology , Niclosamide/therapeutic use , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
11.
Pharmaceutics ; 13(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466598

ABSTRACT

We developed an amorphous solid dispersion (ASD) of the poorly water-soluble molecule niclosamide that achieved a more than two-fold increase in bioavailability. Notably, this niclosamide ASD formulation increased the apparent drug solubility about 60-fold relative to the crystalline material due to the generation of nanoparticles. Niclosamide is a weakly acidic drug, Biopharmaceutics Classification System (BCS) class II, and a poor glass former with low bioavailability in vivo. Hot-melt extrusion is a high-throughput manufacturing method commonly used in the development of ASDs for increasing the apparent solubility and bioavailability of poorly water-soluble compounds. We utilized the polymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP-VA) to manufacture niclosamide ASDs by extrusion. Samples were analyzed based on their microscopic and macroscopic behavior and their intermolecular interactions, using differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and dynamic light scattering (DLS). The niclosamide ASD generated nanoparticles with a mean particle size of about 100 nm in FaSSIF media. In a side-by-side diffusion test, these nanoparticles produced a four-fold increase in niclosamide diffusion. We successfully manufactured amorphous extrudates of the poor glass former niclosamide that showed remarkable in vitro dissolution and diffusion performance. These in vitro tests were translated to a rat model that also showed an increase in oral bioavailability.

12.
Int J Pharm X ; 3: 100073, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34977555

ABSTRACT

Remdesivir dry powder for inhalation was previously developed using thin film freezing (TFF). A single-dose 24-h pharmacokinetic study in hamsters demonstrated that pulmonary delivery of TFF remdesivir can achieve plasma remdesivir and GS-441524 levels higher than the reported EC50s of both remdesivir and GS-441524 (in human epithelial cells) over 20 h. The half-life of GS-4412524 following dry powder insufflation was about 7 h, suggesting the dosing regimen would be twice-daily administration. Although the remdesivir-Captisol® (80/20 w/w) formulation showed faster and greater absorption of remdesivir and GS-4412524 in the lung, remdesivir-leucine (80/20 w/w) exhibited a greater Cmax with shorter Tmax and lower AUC of GS-441524, indicating lower total drug exposure is required to achieve a high effective concentration against SAR-CoV-2. In conclusion, remdesivir dry powder for inhalation would be a promising alternative dosage form for the treatment of COVID-19 disease.

13.
Mol Pharm ; 17(9): 3259-3269, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32787271

ABSTRACT

Adjuvant system 04 (AS04) is in injectable human vaccines. AS04 contains two known adjuvants, 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and insoluble aluminum salts. Data from previous studies showed that both MPL and insoluble aluminum salts have nasal mucosal vaccine adjuvant activity. The present study was designed to test the feasibility of using AS04 as an adjuvant to help nasally administered antigens to induce specific mucosal and systemic immunity as well as to evaluate the deposition of antigens in the upper respiratory tract when adjuvanted with AS04. Alhydrogel, an aluminum (oxy)hydroxide suspension, was mixed with MPL to form AS04, which was then mixed with ovalbumin (OVA) or 3× M2e-HA2, a synthetic influenza virus hemagglutinin fusion protein, as an antigen to prepare OVA/AS04 and 3× M2e-HA2/AS04 vaccines, respectively. In mice, AS04 enabled antigens, when given intranasally, to induce specific IgA response in nasal and lung mucosal secretions as well as specific IgG response in the serum samples of the immunized mice, whereas subcutaneous injection of the same vaccine induced specific antibody responses only in the serum samples but not in the mucosal secretions. Splenocytes isolated from mice intranasally immunized with the OVA/AS04 also proliferated and released cytokines (i.e., IL-4 and IFN-γ) after in vitro stimulation with the antigen. In the immunogenicity test, intranasal OVA/AS04 was not more effective than intranasal OVA/MPL at the dosing regimens tested. However, when compared to OVA/MPL, OVA/AS04 showed a different atomized droplet size distribution and more importantly a more favorable OVA deposition profile when atomized into a nasal cast that was 3-D printed based on the computer tomography scan of the nose of a child. It is concluded that AS04 has mucosal adjuvant activity when given intranasally. In addition, there is a reason to be optimistic about using AS04 as an adjuvant to target an antigen of interest to the right region of the nasal cavity in humans for immune response induction.


Subject(s)
Aluminum Hydroxide/immunology , Antibody Formation/immunology , Antigens/immunology , Immunogenicity, Vaccine/immunology , Lipid A/analogs & derivatives , Respiratory System/immunology , Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Administration, Intranasal/methods , Animals , Cytokines/immunology , Female , Humans , Immunity/immunology , Immunity, Mucosal/immunology , Immunization/methods , Lipid A/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Vaccination/methods
14.
AAPS PharmSciTech ; 21(5): 165, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32500420

ABSTRACT

A transdermal drug delivery system (TDDS) is generally designed to deliver an active pharmaceutical ingredient (API) through the skin for systemic action. Permeation of an API through the skin is controlled by adjusting drug concentration, formulation composition, and patch design. A bilayer, drug-in-adhesive TDDS design may allow improved modulation of the drug release profile by facilitating varying layer thicknesses and drug spatial distribution across each layer. We hypothesized that the co-release of two fixed-dose APIs from a bilayer TDDS could be controlled by modifying spatial distribution and layer thickness while maintaining the same overall formulation composition. Franz cell diffusion studies demonstrated that three different bilayer patch designs, with different spatial distribution of drug and layer thicknesses, could modulate drug permeation and be compared with a reference single-layer monolith patch design. Compared with the monolith, decreased opioid antagonist permeation while maintaining fentanyl permeation could be achieved using a bilayer design. In addition, modulation of the drug spatial distribution and individual layer thicknesses, control of each drug's permeation could be independently achieved. Bilayer patch performance did not change over an 8-week period in accelerated stability storage conditions. In conclusion, modifying the patch design of a bilayer TDDS achieves an individualized permeation of each API while maintaining constant patch composition.


Subject(s)
Drug Delivery Systems , Transdermal Patch , Aged , Animals , Drug Compounding , Humans , Male , Skin/metabolism
15.
Mol Pharm ; 17(2): 632-644, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31913640

ABSTRACT

The caveolin scaffolding domain peptide (CSP) is being developed for the therapeutic intervention of a lethal lung disease, idiopathic pulmonary fibrosis. While direct respiratory delivery of CSP7 (a 7-mer fragment of CSP) is considered an effective route, proper formulation and processing of the peptide are required. First, air-jet milling technology was performed in order to micronize the neat peptide powder. Next, the fine particles were subjected to a stability study with physical and chemical characterizations. In addition, the in vivo efficacy of processed CSP7 powder was evaluated in an animal model of lung fibrosis. The results revealed that, with jet milling, the particle size of CSP7 was reduced to a mass median aerodynamic diameter of 1.58 ± 0.1 µm and 93.3 ± 3.3% fine particle fraction, optimal for deep lung delivery. A statistically significant reduction of collagen was observed in diseased lung tissues of mice that received CSP7 powder for inhalation. The particles remained chemically and physically stable after micronization and during storage. This work demonstrated that jet milling is effective in the manufacturing of a stable, excipient-free CSP7 inhalation powder for the treatment of pulmonary fibrosis.


Subject(s)
Caveolins/chemistry , Drug Compounding/methods , Dry Powder Inhalers/methods , Excipients , Peptides/administration & dosage , Powders/administration & dosage , Protein Domains , Pulmonary Fibrosis/drug therapy , Administration, Inhalation , Aerosols , Animals , Chemistry, Pharmaceutical/methods , Disease Models, Animal , Drug Delivery Systems/methods , Drug Stability , Female , Mice , Mice, Inbred C57BL , Particle Size , Powders/chemistry , Treatment Outcome
16.
J Control Release ; 292: 111-118, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30339906

ABSTRACT

Intranasal vaccination using dry powder vaccine formulation represents an attractive, non-invasive vaccination modality with better storage stability and added protection at the mucosal surfaces. Herein we report that it is feasible to induce specific mucosal and systemic antibody responses by intranasal immunization with a dry powder vaccine adjuvanted with an insoluble aluminum salt. The dry powder vaccine was prepared by thin-film freeze-drying of a model antigen, ovalbumin, adsorbed on aluminum (oxy)hydroxide as an adjuvant. Special emphasis was placed on the characterization of the dry powder vaccine formulation that can be realistically used in humans by a nasal dry powder delivery device. The vaccine powder was found to have "passable" to "good" flow properties, and the vaccine was uniformly distributed in the dry powder. An in vitro nasal deposition study using nasal casts of adult humans showed that around 90% of the powder was deposited in the nasal cavity. Intranasal immunization of rats with the dry powder vaccine elicited a specific serum antibody response as well as specific IgA responses in the nose and lung secretions of the rats. This study demonstrates the generation of systemic and mucosal immune responses by intranasal immunization using a dry powder vaccine adjuvanted with an aluminum salt.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , Aluminum Oxide/administration & dosage , Vaccines/administration & dosage , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacokinetics , Administration, Intranasal , Aluminum Hydroxide/chemistry , Aluminum Hydroxide/pharmacokinetics , Aluminum Oxide/chemistry , Aluminum Oxide/pharmacokinetics , Animals , Antigens/administration & dosage , Antigens/chemistry , Antigens/immunology , Brain/metabolism , Bronchoalveolar Lavage Fluid/immunology , Female , Immunization , Immunoglobulin A/immunology , Immunoglobulin G/blood , Nasal Lavage Fluid/immunology , Ovalbumin/administration & dosage , Ovalbumin/chemistry , Ovalbumin/immunology , Powders , Rats, Sprague-Dawley , Vaccines/chemistry , Vaccines/pharmacokinetics
17.
Int J Pharm ; 548(1): 305-313, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29960037

ABSTRACT

There is currently no in vitro technique for assessing plume geometry of nasal sprays under airflow conditions. However, a majority of FDA approved nasal products recommend that patients inhale during actuation. Therefore, a reproducible in vitro test that measures plume angles under physiologically relevant inhalation flow rates would be useful. The purpose of this study was to adapt the recently described Plume Induction Port Evaluator (PIPE) apparatus for nasal sprays under flow and correlate these with nasal cast deposition patterns. Mass Median Plume Angles (MMPAs) of four nasal spray formulations with increasing viscosities were determined using the PIPE apparatus in the absence and presence of airflow. MMPAs were then correlated to drug deposition within 3D printed nasal casts using airflow. We evaluated different inhalation instructions obtained from the package insert of nasal products. MMPAs significantly reduced (narrower angles) when using flow for the three formulations with the lowest viscosities. An increase in the turbinate deposition was observed in the nasal casts when just one of the nostrils was closed during inhalation, except by the highest viscosity formulation. The turbinate deposition numerically correlated with changes in the plume angles observed using PIPE.


Subject(s)
Nasal Sprays , Turbinates/metabolism , Administration, Intranasal , Anti-Asthmatic Agents/administration & dosage , Child , Cromolyn Sodium/administration & dosage , Female , Humans , Hypromellose Derivatives/administration & dosage , Male , Middle Aged , Models, Anatomic , Viscosity
18.
Pharmaceutics ; 10(2)2018 May 19.
Article in English | MEDLINE | ID: mdl-29783757

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and lethal central nervous system tumor. Recently, atovaquone has shown inhibition of signal transducer and activator transcription 3, a promising target for GBM therapy. However, it is currently unable to achieve therapeutic drug concentrations in the brain with the currently reported and marketed formulations. The present study sought to explore the efficacy of atovaquone against GBM as well as develop a formulation of atovaquone that would improve oral bioavailability, resulting in higher amounts of drug delivered to the brain. Atovaquone was formulated as an amorphous solid dispersion using an optimized formulation containing a polymer and a spontaneously emulsifying component (SEC) with greatly improved wetting, disintegration, dispersibility, and dissolution properties. Atovaquone demonstrated cytotoxicity against GBM cell lines as well as provided a confirmed target for atovaquone brain concentrations in in vitro cell viability studies. This new formulation approach was then assessed in a proof-of-concept in vivo exposure study. Based on these results, the enhanced amorphous solid dispersion is promising for providing therapeutically effective brain levels of atovaquone for the treatment of GBM.

19.
Mol Pharm ; 15(4): 1392-1402, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29485888

ABSTRACT

Effective targeting of nasal spray deposition could improve local, systemic, and CNS drug delivery; however, this has proven to be difficult due to the anatomical features of the nasal cavity, including the nasal valve and turbinate structures. Furthermore, nasal cavity geometries and dimensions vary between individuals based on differences in their age, gender, and ethnicity. The effect of patient-specific administration parameters was evaluated for their ability to overcome the barriers of targeted nasal drug delivery. The nasal spray deposition was evaluated in 10 3D-printed nasal cavity replicas developed based on the CT-scans of five pediatric and five adult subjects. Cromolyn sodium nasal solution, USP, modified with varying concentrations of hypromellose was utilized as a model nasal spray to evaluate the deposition pattern from formulations producing a variety of plume angles. A central composite design of experiments was implemented using the formulation with the narrowest plume angle to determine the patient-specific angle for targeting the turbinate region in each individual. The use of the patient-specific angle with this formulation significantly increased the turbinate deposition efficiency compared to that found for all subjects using an administration angle of 30°, around 90% compared to about 73%. Generally, we found turbinate deposition increased with decreases in the administration angle. Deposition to the upper regions of the replica was poor with any formulation or administration angle tested. Effective turbinate targeting of nasal sprays can be accomplished with the use of patient-specific administration parameters in individuals. Further research is required to see if these parameters can be device-controlled for patients and if other regions can be effectively targeted with other nasal devices.


Subject(s)
Aerosols/administration & dosage , Aerosols/chemistry , Nasal Cavity/drug effects , Administration, Intranasal/methods , Adolescent , Adult , Chemistry, Pharmaceutical/methods , Child , Drug Delivery Systems/methods , Female , Humans , Hypromellose Derivatives/chemistry , Male , Middle Aged , Nasal Sprays , Precision Medicine/methods , Printing, Three-Dimensional , Turbinates/drug effects
20.
J Pharm Sci ; 107(1): 453-465, 2018 01.
Article in English | MEDLINE | ID: mdl-29045883

ABSTRACT

During formulation development, efficiently integrating in vitro dissolution testing can significantly improve one's ability to estimate in vivo performance and aide in the selection of premier drug candidates. The concept of in vitro-in vivo relationship/correlation has garnered significant attention from pharmaceutical scientists to predict expected bioavailability characteristics for drug substances and products. The present work illustrates a comparative evaluation of in vitro tests to access crystalline carbamazepine and various types of amorphous and crystalline dispersions of carbamazepine and Eudragit® L100 produced by spray drying, including a membrane-permeation dissolution methodology and nonsink dissolution. To establish the best model, parameters such as pH, membrane constitution, and dissolution media composition were investigated. The in vitro results were compared against in vivo mice pharmacokinetic studies and qualitatively, the membrane-permeation dissolution methodology correlated well with in vivo. Various correlations were performed in order to evaluate the optimal model for characterizing the relationship. Results exhibited a coefficient of determination (R2) values of 0.90 and 1.00, depicting a linear relationship of the data in comparison. Therefore, for the current formulation system (drug/polymer/technique), membrane-permeation dissolution can guide formulation development and potentially reduce the number of animal and clinical pharmacokinetic studies required.


Subject(s)
Carbamazepine/chemistry , Nanoparticles/chemistry , Animals , Biological Availability , Carbamazepine/pharmacokinetics , Chemistry, Pharmaceutical/methods , Dogs , Mice , Permeability/drug effects , Polymers/chemistry , Polymethacrylic Acids/chemistry , Solubility/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...