Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Brain Commun ; 6(3): fcae161, 2024.
Article in English | MEDLINE | ID: mdl-38764777

ABSTRACT

This paper outlines the therapeutic rationale and neurosurgical targeting technique for bilateral, closed-loop, thalamocortical stimulation in Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy. Thalamic stimulation can be an effective treatment for Lennox-Gastaut syndrome, but complete seizure control is rarely achieved. Outcomes may be improved by stimulating areas beyond the thalamus, including cortex, but the optimal targets are unknown. We aimed to identify a cortical target by synthesizing prior neuroimaging studies, and to use this knowledge to advance a dual thalamic (centromedian) and cortical (frontal) approach for closed-loop stimulation. Multi-modal brain network maps from three group-level studies of Lennox-Gastaut syndrome were averaged to define the area of peak overlap: simultaneous EEG-functional MRI of generalized paroxysmal fast activity, [18F]fluorodeoxyglucose PET of cortical hypometabolism and diffusion MRI structural connectivity associated with clinical efficacy in a previous trial of thalamic deep brain stimulation. The resulting 'hotspot' was used as a seed in a normative functional MRI connectivity analysis to identify connected networks. Intracranial electrophysiology was reviewed in the first two trial patients undergoing bilateral implantations guided by this hotspot. Simultaneous recordings from cortex and thalamus were analysed for presence and synchrony of epileptiform activity. The peak overlap was in bilateral premotor cortex/caudal middle frontal gyrus. Functional connectivity of this hotspot revealed a distributed network of frontoparietal cortex resembling the diffuse abnormalities seen on EEG-functional MRI and PET. Intracranial electrophysiology showed characteristic epileptiform activity of Lennox-Gastaut syndrome in both the cortical hotspot and thalamus; most detected events occurred first in the cortex before appearing in the thalamus. Premotor frontal cortex shows peak involvement in Lennox-Gastaut syndrome and functional connectivity of this region resembles the wider epileptic brain network. Thus, it may be an optimal target for a range of neuromodulation therapies, including thalamocortical stimulation and emerging non-invasive treatments like focused ultrasound or transcranial magnetic stimulation. Compared to thalamus-only approaches, the addition of this cortical target may allow more rapid detections of seizures, more diverse stimulation paradigms and broader modulation of the epileptic network. A prospective, multi-centre trial of closed-loop thalamocortical stimulation for Lennox-Gastaut syndrome is currently underway.

2.
Expert Rev Neurother ; : 1-20, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814860

ABSTRACT

INTRODUCTION: Infantile epileptic spasms syndrome (IESS) is a common developmental and epileptic encephalopathy with poor long-term outcomes. A substantial proportion of patients with IESS have a potentially surgically remediable etiology. Despite this, epilepsy surgery is underutilized in this patient group. Some surgically remediable etiologies, such as focal cortical dysplasia and malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE), are under-diagnosed in infants and young children. Even when a surgically remediable etiology is recognised, for example, tuberous sclerosis or focal encephalomalacia, epilepsy surgery may be delayed or not considered due to diffuse EEG changes, unclear surgical boundaries, or concerns about operating in this age group. AREAS COVERED: In this review, the authors discuss the common surgically remediable etiologies of IESS, their clinical and EEG features, and the imaging techniques that can aid in their diagnosis. They then describe the surgical approaches used in this patient group, and the beneficial impact that early epilepsy surgery can have on developing brain networks. EXPERT OPINION: Epilepsy surgery remains underutilized even when a potentially surgically remediable cause is recognized. Overcoming the barriers that result in under-recognition of surgical candidates and underutilization of epilepsy surgery in IESS will improve long-term seizure and developmental outcomes.

3.
Epilepsia ; 65(6): 1644-1657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488289

ABSTRACT

OBJECTIVE: Patients with focal, lesional epilepsy present with seizures at variable ages. Larger lesion size and overlap with sensorimotor or default mode network (DMN) have been associated with younger age at seizure onset in cohorts with mixed types of focal cortical dysplasia (FCD). Here, we studied determinants of age at seizure onset in patients with bottom-of-sulcus dysplasia (BOSD), a discrete type of FCD with highly localized epileptogenicity. METHODS: Eighty-four patients (77% operated) with BOSD were studied. Demographic, histopathologic, and genetic findings were recorded. BOSD volume and anatomical, primary versus association, rostral versus caudal, and functional network locations were determined. Normative functional connectivity analyses were performed using each BOSD as a region of interest in resting-state functional magnetic resonance imaging data of healthy children. Variables were correlated with age at seizure onset. RESULTS: Median age at seizure onset was 5.4 (interquartile range = 2-7.9) years. Of 50 tested patients, 22 had somatic and nine had germline pathogenic mammalian target of rapamycin (mTOR) pathway variants. Younger age at seizure onset was associated with greater BOSD volume (p = .002), presence of a germline pathogenic variant (p = .04), DMN overlap (p = .04), and increased functional connectivity with the DMN (p < .05, false discovery rate corrected). Location within sensorimotor cortex and networks was not associated with younger age at seizure onset in our relatively small but homogenous cohort. SIGNIFICANCE: Greater lesion size, pathogenic mTOR pathway germline variants, and DMN connectivity are associated with younger age at seizure onset in small FCD. Our findings strengthen the suggested role of DMN connectivity in the onset of FCD-related focal epilepsy and reveal novel contributions of genetic etiology.


Subject(s)
Age of Onset , Epilepsies, Partial , Magnetic Resonance Imaging , Seizures , Humans , Epilepsies, Partial/genetics , Epilepsies, Partial/physiopathology , Epilepsies, Partial/diagnostic imaging , Male , Female , Child , Child, Preschool , Seizures/genetics , Seizures/diagnostic imaging , Seizures/physiopathology , Malformations of Cortical Development/genetics , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/complications , Malformations of Cortical Development/physiopathology , TOR Serine-Threonine Kinases/genetics , Adolescent , Default Mode Network/diagnostic imaging , Default Mode Network/physiopathology
4.
Epilepsia Open ; 9(3): 850-864, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38456595

ABSTRACT

Status Epilepticus (SE), unresponsive to medical management, is associated with high morbidity and mortality. Surgical management is typically considered in these refractory cases. The best surgical approach for affected patients remains unclear; however, given the lack of controlled trials exploring the role of surgery. We performed a systematic review according to PRIMSA guidelines, including case reports and series describing surgical interventions for patients in SE. Cases (157 patients, median age 12.9 years) were followed for a median of 12 months. Patients were in SE for a median of 21 days before undergoing procedures including: focal resection (36.9%), functional hemispherectomy (21%), lobar resection (12.7%), vagus nerve stimulation (VNS) (12.7%), deep brain stimulation (DBS) (6.4%), multiple subpial transection (MST) (3.8%), responsive neurostimulation (RNS) (1.9%), and cortical stimulator placement (1.27%), with 24 patients undergoing multiple procedures. Multiple SE semiologies were identified. 47.8% of patients had focal seizures, and 65% of patients had focal structural abnormalities on MRI. SE persisted for 36.8 ± 47.7 days prior to surgical intervention. SE terminated following surgery in 81.5%, terminated with additional adjuncts in 10.2%, continued in 1.9%, and was not specified in 6.4% of patients. Long-term seizure outcomes were favorable, with the majority improved and 51% seizure-free. Eight patients passed away in follow-up, of which three were in SE. Seizures emerging from one hemisphere were both more likely to immediately terminate (OR 4.7) and lead to long-term seizure-free status (OR 3.9) compared to nonunilateral seizures. No other predictors, including seizure focality, SE duration, or choice of surgical procedure, were predictors of SE termination. Surgical treatment of SE can be effective in terminating SE and leading to sustained seizure freedom, with many different procedures showing efficacy if matched appropriately with SE semiology and etiology. PLAIN LANGUAGE SUMMARY: Patients with persistent seizures (Status Epilepticus) that do not stop following medications can be treated effectively with surgery. Here, we systematically review the entirety of existing literature on surgery for treating status epilepticus to better identify how and when surgery is used and what patients do after surgery.


Subject(s)
Status Epilepticus , Humans , Status Epilepticus/surgery , Neurosurgical Procedures/methods , Vagus Nerve Stimulation , Deep Brain Stimulation , Child , Treatment Outcome
5.
Brain ; 147(4): 1264-1277, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37939785

ABSTRACT

Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epileptic Syndromes , Malformations of Cortical Development , Humans , Fluorodeoxyglucose F18 , Malformations of Cortical Development/genetics , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/genetics , Epilepsies, Partial/pathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/surgery , Magnetic Resonance Imaging/methods , Seizures/complications , TOR Serine-Threonine Kinases , GTPase-Activating Proteins/genetics
6.
Stereotact Funct Neurosurg ; 101(5): 287-300, 2023.
Article in English | MEDLINE | ID: mdl-37552969

ABSTRACT

INTRODUCTION: Prompt dissemination of clinical trial results is essential for ensuring the safety and efficacy of intracranial neurostimulation treatments, including deep brain stimulation (DBS) and responsive neurostimulation (RNS). However, the frequency and completeness of results publication, and reasons for reporting delays, are unknown. Moreover, the patient populations, targeted anatomical locations, and stimulation parameters should be clearly reported for both reproducibility and to identify lacunae in trial design. Here, we examine DBS and RNS trials from 1997 to 2022, chart their characteristics, and examine rates and predictors of results reporting. METHODS: Trials were identified using ClinicalTrials.gov. Associated publications were identified using ClinicalTrials.gov and PubMed.gov. Pearson's χ2 tests were used to assess differences in trial characteristics between published and unpublished trials. RESULTS: Across 449 trials, representing a cumulative cohort of 42,769 patient interventions, there were 37 therapeutic indications and 44 stimulation targets. The most common indication and target were Parkinson's disease (40.55%) and the subthalamic nucleus (35.88%), respectively. Only 0.89% of trials were in pediatric patients (11.58% were mixed pediatric and adult). Explored targets represented 75% of potential basal ganglia targets but only 29% of potential thalamic targets. Allowing a 1-year grace period after trial completion, 34/169 (20.12%) had results reported on ClinicalTrials.gov, and 107/169 (63.31%) were published. ∼80% of published trials included details about stimulation parameters used. Published and unpublished trials did not significantly differ by trial characteristics. CONCLUSION: We highlight key knowledge and performance gaps in DBS and RNS trial research. Over one-third of trials remain unpublished >1 year after completion; pediatric trials are scarce; most of the thalamus remains unexplored; about one-in-five trials fail to report stimulation parameters; and movement disorders comprise the most studied indications.


Subject(s)
Subthalamic Nucleus , Adult , Humans , Child , Reproducibility of Results , Basal Ganglia
7.
Epilepsia ; 64(10): 2586-2603, 2023 10.
Article in English | MEDLINE | ID: mdl-37483140

ABSTRACT

OBJECTIVE: Here, we report a retrospective, single-center experience with a novel deep brain stimulation (DBS) device capable of chronic local field potential (LFP) recording in drug-resistant epilepsy (DRE) and explore potential electrophysiological biomarkers that may aid DBS programming and outcome tracking. METHODS: Five patients with DRE underwent thalamic DBS, targeting either the bilateral anterior (n = 3) or centromedian (n = 2) nuclei. Postoperative electrode lead localizations were visualized in Lead-DBS software. Local field potentials recorded over 12-18 months were tracked, and changes in power were associated with patient events, medication changes, and stimulation. We utilized a combination of lead localization, in-clinic broadband LFP recordings, real-time LFP response to stimulation, and chronic recordings to guide DBS programming. RESULTS: Four patients (80%) experienced a >50% reduction in seizure frequency, whereas one patient had no significant reduction. Peaks in the alpha and/or beta frequency range were observed in the thalamic LFPs of each patient. Stimulation suppressed these LFP peaks in a dose-dependent manner. Chronic timeline data identified changes in LFP amplitude associated with stimulation, seizure occurrences, and medication changes. We also noticed a circadian pattern of LFP amplitudes in all patients. Button-presses during seizure events via a mobile application served as a digital seizure diary and were associated with elevations in LFP power. SIGNIFICANCE: We describe an initial cohort of patients with DRE utilizing a novel sensing DBS device to characterize potential LFP biomarkers of epilepsy that may be associated with seizure control after DBS in DRE. We also present a new workflow utilizing the Percept device that may optimize DBS programming using real-time and chronic LFP recording.


Subject(s)
Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Humans , Deep Brain Stimulation/adverse effects , Retrospective Studies , Feasibility Studies , Drug Resistant Epilepsy/therapy , Drug Resistant Epilepsy/etiology , Epilepsy/therapy , Seizures/etiology , Biomarkers
8.
Magn Reson Imaging ; 103: 18-27, 2023 11.
Article in English | MEDLINE | ID: mdl-37400042

ABSTRACT

Functional magnetic resonance images (fMRI) acquired using echo planar sequences typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may cause geometric mismatch with structural images and affect subsequent quantification and localization of brain function. State-of-the art distortion correction methods (for example, using FSL's topup or AFNI's 3dQwarp algorithms) require the collection of additional scans - either field maps or images with reverse phase encoding directions (i.e., blip-up/blip-down acquisitions) - to estimate and correct distortions. However, not all imaging protocols acquire these additional data and thus cannot take advantage of these post-acquisition corrections. In this study, we aim to enable state-of-the art processing of historical or limited datasets that do not include specific sequences for distortion correction by using only the acquired functional data and a single commonly acquired structural image. To achieve this, we synthesize an undistorted image with contrast similar to the fMRI data and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach, named SynBOLD-DisCo (Synthetic BOLD contrast for Distortion Correction), and show that this distortion correction process yields fMRI data that are geometrically similar to non-distorted structural images, with distortion correction virtually equivalent to acquisitions that do contain both blip-up/blip-down images. Our method is available as a Singularity container, source code, and an executable trained model to facilitate evaluation and integration into existing fMRI preprocessing pipelines.


Subject(s)
Echo-Planar Imaging , Image Processing, Computer-Assisted , Echo-Planar Imaging/methods , Image Processing, Computer-Assisted/methods , Artifacts , Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging
9.
Epilepsy Res ; 192: 107131, 2023 05.
Article in English | MEDLINE | ID: mdl-37054522

ABSTRACT

INTRODUCTION: Lennox Gastaut syndrome (LGS) can be conceptualised as a "secondary network epilepsy", in which the shared electroclinical manifestations reflect epileptic recruitment of a common brain network, despite a range of underlying aetiologies. We aimed to identify the key networks recruited by the epileptic process of LGS using interictal 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18F-FDG-PET). METHODS: Group analysis of cerebral 18F-FDG-PET, comparing 21 patients with LGS (mean age = 15 years) and 18 pseudo-controls (mean age = 19 years), studied at Austin Health Melbourne, between 2004 and 2015. To minimise the influence of individual patient lesions in the LGS group, we only studied brain hemispheres without structural MRI abnormalities. The pseudo-control group consisted of age- and sex-matched patients with unilateral temporal lobe epilepsy, using only the hemispheres contralateral to the side of epilepsy. Voxel-wise permutation testing compared 18F-FDG-PET uptake between groups. Associations were explored between areas of altered metabolism and clinical variables (age of seizure onset, proportion of life with epilepsy, and verbal/nonverbal ability). Penetrance maps were calculated to explore spatial consistency of altered metabolic patterns across individual patients with LGS. RESULTS: Although not always readily apparent on visual inspection of individual patient scans, group analysis revealed hypometabolism in a network of regions including prefrontal and premotor cortex, anterior and posterior cingulate, inferior parietal lobule, and precuneus (p < 0.05, corrected for family-wise error). These brain regions tended to show a greater reduction in metabolism in non-verbal compared to verbal LGS patients, although this difference was not statistically significant. No areas of hypermetabolism were detected on group analysis, although ∼25 % of individual patients showed increased metabolism (relative to pseudo-controls) in the brainstem, putamen, thalamus, cerebellum, and pericentral cortex. DISCUSSION: Interictal hypometabolism in frontoparietal cortex in LGS is compatible with our previous EEG-fMRI and SPECT studies showing that interictal bursts of generalised paroxysmal fast activity and tonic seizures recruit similar cortical regions. This study provides further evidence that these regions are central to the electroclinical expression of LGS.


Subject(s)
Epilepsy , Lennox Gastaut Syndrome , Humans , Adolescent , Young Adult , Adult , Lennox Gastaut Syndrome/diagnostic imaging , Fluorodeoxyglucose F18 , Brain/diagnostic imaging , Seizures , Positron-Emission Tomography , Electroencephalography
10.
Epilepsia ; 64(2): 348-363, 2023 02.
Article in English | MEDLINE | ID: mdl-36527426

ABSTRACT

OBJECTIVE: Favorable seizure outcome is reported following resection of bottom-of-sulcus dysplasia (BOSD). We assessed the distribution of epileptogenicity and dysplasia in and around BOSD to better understand this clinical outcome and the optimal surgical approach. METHODS: We studied 27 children and adolescents with magnetic resonance imaging (MRI)-positive BOSD who underwent epilepsy surgery; 85% became seizure-free postresection (median = 5.0 years follow-up). All patients had resection of the dysplastic sulcus, and 11 had additional resection of the gyral crown (GC) or adjacent gyri (AG). Markers of epileptogenicity were relative cortical hypometabolism on preoperative 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET), and spiking, ripples, fast ripples, spike-high-frequency oscillation cross-rate, and phase amplitude coupling (PAC) on preresection and postresection electrocorticography (ECoG), all analyzed at the bottom-of-sulcus (BOS), top-of-sulcus (TOS), GC, and AG. Markers of dysplasia were increased cortical thickness on preoperative MRI, and dysmorphic neuron density and variant allele frequency of somatic MTOR mutations in resected tissue, analyzed at similar locations. RESULTS: Relative cortical metabolism was significantly reduced and ECoG markers were significantly increased at the BOS compared to other regions. Apart from spiking and PAC, which were greater at the TOS compared to the GC, there were no significant differences in PET and other ECoG markers between the TOS, GC, and AG, suggesting a cutoff of epileptogenicity at the TOS rather than a tapering gradient on the cortical surface. MRI and tissue markers of dysplasia were all maximal in the BOS, reduced in the TOS, and mostly absent in the GC. Spiking and PAC reduced significantly over the GC after resection of the dysplastic sulcus. SIGNIFICANCE: These findings support the concept that dysplasia and intrinsic epileptogenicity are mostly limited to the dysplastic sulcus in BOSD and support resection or ablation confined to the MRI-visible lesion as a first-line surgical approach. 18 F-FDG PET and ECoG abnormalities in surrounding cortex seem to be secondary phenomena.


Subject(s)
Epilepsy , Focal Cortical Dysplasia , Child , Adolescent , Humans , Electroencephalography , Fluorodeoxyglucose F18 , Epilepsy/diagnostic imaging , Epilepsy/etiology , Epilepsy/surgery , Magnetic Resonance Imaging/methods
11.
Epilepsia ; 63(12): 3134-3147, 2022 12.
Article in English | MEDLINE | ID: mdl-36114808

ABSTRACT

OBJECTIVE: Epilepsy treatment trials typically rely on seizure diaries to determine seizure frequency, but these are time-consuming and difficult to maintain accurately. Fast, reliable, and objective biomarkers of treatment response are needed, particularly in Lennox-Gastaut syndrome (LGS), where high seizure frequency and comorbid cognitive and behavioral issues are additional obstacles to accurate diary-keeping. Here, we measured generalized paroxysmal fast activity (GPFA), a key interictal electrographic feature of LGS, and correlated GPFA burden with seizure diaries during a thalamic deep brain stimulation (DBS) treatment trial (Electrical Stimulation of the Thalamus in Epilepsy of Lennox-Gastaut Phenotype [ESTEL]). METHODS: GPFA and electrographic seizure counts from intermittent, 24-h electroencephalograms (EEGs) were compared to 3-month diary-recorded seizure counts in 17 young adults with LGS (mean age ± SD = 24.9 ± 6.6) in the ESTEL study, a randomized clinical trial of DBS lasting 12 months (comprising a 3-month baseline and 9 months of postimplantation follow-up). RESULTS: Baseline median seizures measured by diaries numbered 2.6 (interquartile range [IQR] = 1.4-5) per day, compared to 284 (IQR = 120.5-360) electrographic seizures per day, confirming that diaries capture only a small fraction of seizure burden. Across all patient EEGs, the average number of GPFA discharges per hour of sleep was 138 (IQR =72-258). GPFA duration and frequency, quantified over 2-h windows of sleep EEG, were significantly associated with diary-recorded seizure counts over 3-month intervals (p < .001, η2 p  = .30-.48). For every GPFA discharge, there were 20-25 diary seizures witnessed over 3 months. There was high between-patient variability in the ratio between diary seizure burden and GPFA burden; however, within individual patients, the ratio was similar over time, such that the percentage change from pre-DBS baseline in seizure diaries strongly correlated with the percentage change in GPFA. SIGNIFICANCE: When seeking to optimize treatment in patients with LGS, monitoring changes in GPFA may allow rapid titration of treatment parameters, rather than waiting for feedback from seizure diaries.


Subject(s)
Deep Brain Stimulation , Lennox Gastaut Syndrome , Humans , Lennox Gastaut Syndrome/therapy , Seizures
12.
Seizure ; 101: 67-74, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35932526

ABSTRACT

PURPOSE: We previously reported seizure and EEG outcomes of the ESTEL study (Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype). To assess potential cognitive and behavioral changes during chronic, duty-cycle stimulation of bilateral thalamic centromedian nucleus, we compared standardized cognitive and behavioral measurements, as well as caregiver assessments of disability/severity, before implantation and after 3-months stimulation. METHODS: Twenty patients with LGS (17-37 years;13 females) were studied; one participant was not randomized due to DBS device removal, with outcomes of 19 remaining participants reported here. Cognitive and behavioral measurements were performed at baseline (i.e., before DBS implantation), at the end of the blinded stimulation phase, and at study exit. Instruments measured cognition (NIH toolbox cognitive battery, NIHTB-CB), adaptive skills (ABAS-3), epilepsy severity (GASE) and disability (GAD), quality of life (QOLIE-31), and depression (PHQ-9). Changes in scores after 3-months of stimulation relative to baseline were explored using Wilcoxon matched-pairs signed rank tests. RESULTS: After 3-months of stimulation, caregiver-reported epilepsy severity (GASE) and disability (GAD) improved (p<0.05). No other instrument showed a significant change from baseline. Measurements that required direct participant involvement, rather than caregivers, was completed by only a subset of higher-functioning individuals (NIHTB-CB, n = 13; QOLIE-31, n = 3; and PHQ-9, n = 6). In addition to cognitive impairments, behavioral and physical limitations were common obstacles to instrument completion. Standardized scores were hindered by 'floor effects'; however, raw scores better reflected clinical impressions of participants' functioning and were more sensitive to caregiver-reported changes following treatment. CONCLUSION: DBS treatment is associated with reduced epilepsy severity and disability in young adults with LGS. Performing cognitive and behavioral outcome measurement in patients with cognitive impairment is challenging but possible and requires careful selection of instruments and modifications of score interpretation to avoid floor effects.


Subject(s)
Deep Brain Stimulation , Epilepsy , Lennox Gastaut Syndrome , Adolescent , Adult , Cognition , Epilepsy/therapy , Female , Gallium , Humans , Lennox Gastaut Syndrome/therapy , Male , Quality of Life , Selenium , Young Adult
13.
Ann Neurol ; 92(1): 61-74, 2022 07.
Article in English | MEDLINE | ID: mdl-35429045

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) can reduce seizures in Lennox-Gastaut syndrome (LGS). However, little is known about the optimal target and whether efficacy depends on connectivity of the stimulation site. Using outcome data from the ESTEL trial, we aimed to determine the optimal target and connectivity for DBS in LGS. METHODS: A total of 20 patients underwent bilateral DBS of the thalamic centromedian nucleus (CM). Outcome was percentage seizure reduction from baseline after 3 months of DBS, defined using three measures (monthly seizure diaries, 24-hour scalp electroencephalography [EEG], and a novel diary-EEG composite). Probabilistic stimulation mapping identified thalamic locations associated with higher/lower efficacy. Two substitute diffusion MRI datasets (a normative dataset from healthy subjects and a "disease-matched" dataset from a separate group of LGS patients) were used to calculate structural connectivity between DBS sites and a map of areas known to express epileptic activity in LGS, derived from our previous EEG-fMRI research. RESULTS: Results were similar across the three outcome measures. Stimulation was most efficacious in the anterior and inferolateral "parvocellular" CM border, extending into the ventral lateral nucleus (posterior subdivision). There was a positive association between diary-EEG composite seizure reduction and connectivity to areas of a priori EEG-fMRI activation, including premotor and prefrontal cortex, putamen, and pontine brainstem. In contrast, outcomes were not associated with baseline clinical variables. INTERPRETATION: Efficacious CM-DBS for LGS is linked to stimulation of the parvocellular CM and the adjacent ventral lateral nucleus, and is associated with connectivity to, and thus likely modulation of, the "secondary epileptic network" underlying the shared electroclinical manifestations of LGS. ANN NEUROL 2022;92:61-74.


Subject(s)
Deep Brain Stimulation , Epilepsy , Lennox Gastaut Syndrome , Deep Brain Stimulation/methods , Electroencephalography , Epilepsy/therapy , Humans , Lennox Gastaut Syndrome/therapy , Seizures
14.
Ann Neurol ; 91(2): 253-267, 2022 02.
Article in English | MEDLINE | ID: mdl-34877694

ABSTRACT

OBJECTIVE: Prior uncontrolled studies have reported seizure reductions following deep brain stimulation (DBS) in patients with Lennox-Gastaut syndrome (LGS), but evidence from randomized controlled studies is lacking. We aimed to formally assess the efficacy and safety of DBS to the centromedian thalamic nucleus (CM) for the treatment of LGS. METHODS: We conducted a prospective, double-blind, randomized study of continuous, cycling stimulation of CM-DBS, in patients with LGS. Following pre- and post-implantation periods, half received 3 months of stimulation (blinded phase), then all received 3 months of stimulation (unblinded phase). The primary outcome was the proportion of participants with ≥50% reduction in diary-recorded seizures in stimulated versus control participants, measured at the end of the blinded phase. A secondary outcome was the proportion of participants with a ≥50% reduction in electrographic seizures on 24-hour ambulatory electroencephalography (EEG) at the end of the blinded phase. RESULTS: Between November 2017 and December 2019, 20 young adults with LGS (17-37 years;13 women) underwent bilateral CM-DBS at a single center in Australia, with 19 randomized (treatment, n = 10 and control, n = 9). Fifty percent of the stimulation group achieved ≥50% seizure reduction, compared with 22% of controls (odds ratio [OR] = 3.1, 95% confidence interval [CI] = 0.44-21.45, p = 0.25). For electrographic seizures, 59% of the stimulation group had ≥50% reduction at the end of the blinded phase, compared with none of the controls (OR= 23.25, 95% CI = 1.0-538.4, p = 0.05). Across all patients, median seizure reduction (baseline vs study exit) was 46.7% (interquartile range [IQR] = 28-67%) for diary-recorded seizures and 53.8% (IQR = 27-73%) for electrographic seizures. INTERPRETATION: CM-DBS in patients with LGS reduced electrographic rather than diary-recorded seizures, after 3 months of stimulation. Fifty percent of all participants had diary-recorded seizures reduced by half at the study exit, providing supporting evidence of the treatment effect. ANN NEUROL 2022;91:253-267.


Subject(s)
Deep Brain Stimulation/methods , Intralaminar Thalamic Nuclei , Lennox Gastaut Syndrome/therapy , Adolescent , Adult , Deep Brain Stimulation/adverse effects , Double-Blind Method , Electroencephalography , Female , Humans , Male , Patient Safety , Prospective Studies , Seizures/etiology , Seizures/prevention & control , Treatment Outcome , Young Adult
15.
Neurology ; 97(2): e178-e190, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33947776

ABSTRACT

OBJECTIVE: To determine whether 1-stage, limited corticectomy controls seizures in patients with MRI-positive, bottom-of-sulcus dysplasia (BOSD). METHODS: We reviewed clinical, neuroimaging, electrocorticography (ECoG), operative, and histopathology findings in consecutively operated patients with drug-resistant focal epilepsy and MRI-positive BOSD, all of whom underwent corticectomy guided by MRI and ECoG. RESULTS: Thirty-eight patients with a median age at surgery of 10.2 (interquartile range [IQR] 6.0-14.1) years were included. BOSDs involved eloquent cortex in 15 patients. Eighty-seven percent of patients had rhythmic spiking on preresection ECoG. Rhythmic spiking was present in 22 of 24 patients studied with combined depth and surface electrodes, being limited to the dysplastic sulcus in 7 and involving the dysplastic sulcus and gyral crown in 15. Sixty-eight percent of resections were limited to the dysplastic sulcus, leaving the gyral crown. Histopathology was focal cortical dysplasia (FCD) type IIb in 29 patients and FCDIIa in 9. Dysmorphic neurons were present in the bottom of the sulcus but not the top or the gyral crown in 17 of 22 patients. Six (16%) patients required reoperation for postoperative seizures and residual dysplasia; reoperation was not correlated with ECoG, neuroimaging, or histologic abnormalities in the gyral crown. At a median 6.3 (IQR 4.8-9.9) years of follow-up, 33 (87%) patients are seizure-free, 31 off antiseizure medication. CONCLUSION: BOSD can be safely and effectively resected with MRI and ECoG guidance, corticectomy potentially being limited to the dysplastic sulcus, without need for intracranial EEG monitoring and functional mapping. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that 1-stage, limited corticectomy for BOSD is safe and effective for control of seizures.


Subject(s)
Cerebral Cortex/surgery , Epilepsy/surgery , Malformations of Cortical Development, Group I/surgery , Adolescent , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Child , Epilepsy/diagnostic imaging , Epilepsy/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Malformations of Cortical Development, Group I/diagnostic imaging , Malformations of Cortical Development, Group I/physiopathology , Monitoring, Physiologic , Neurosurgical Procedures/methods , Preoperative Care , Treatment Outcome
16.
Comput Biol Med ; 133: 104287, 2021 06.
Article in English | MEDLINE | ID: mdl-34022764

ABSTRACT

OBJECTIVE: Markup of generalized interictal epileptiform discharges (IEDs) on EEG is an important step in the diagnosis and characterization of epilepsy. However, manual EEG markup is a time-consuming, subjective, and the specialized task where the human reviewer needs to visually inspect a large amount of data to facilitate accurate clinical decisions. In this study, we aimed to develop a framework for automated detection of generalized paroxysmal fast activity (GPFA), a generalized IED seen in scalp EEG recordings of patients with the severe epilepsy of Lennox-Gastaut syndrome (LGS). METHODS: We studied 13 children with LGS who had GPFA events in their interictal EEG recordings. Time-frequency information derived from manually marked IEDs across multiple EEG channels was used to automatically detect similar events in each patient's interictal EEG. We validated true positives and false positives of the proposed spike detection approach using both standalone scalp EEG and simultaneous EEG-functional MRI (EEG-fMRI) recordings. RESULTS: GPFA events displayed a consistent low-high frequency arrangement in the time-frequency domain. This 'bimodal' spectral feature was most prominent over frontal EEG channels. Our automatic detection approach using this feature identified EEG events with similar time-frequency properties to the manually marked GPFAs. Brain maps of EEG-fMRI signal change during these automatically detected IEDs were comparable to the EEG-fMRI brain maps derived from manual IED markup. CONCLUSION: GPFA events have a characteristic bimodal time-frequency feature that can be automatically detected from scalp EEG recordings in patients with LGS. The validity of this time-frequency feature is demonstrated by EEG-fMRI analysis of automatically detected events, which recapitulates the brain maps we have previously shown to underlie generalized IEDs in LGS. SIGNIFICANCE: This study provides a novel methodology that enables a fast, automated, and objective inspection of generalized IEDs in LGS. The proposed framework may be extendable to a wider range of epilepsy syndromes in which monitoring the burden of epileptic activity can aid clinical decision-making and faster assessment of treatment response and estimation of future seizure risk.


Subject(s)
Electroencephalography , Epilepsy , Brain/diagnostic imaging , Brain Mapping , Child , Humans , Magnetic Resonance Imaging
17.
Epilepsia ; 61(10): 2214-2223, 2020 10.
Article in English | MEDLINE | ID: mdl-32944944

ABSTRACT

OBJECTIVE: We aimed to assess the roles of the cortex and thalamus (centromedian nucleus [CM]) during epileptic activity in Lennox-Gastaut syndrome (LGS) patients undergoing deep brain stimulation (DBS) surgery as part of the ESTEL (Electrical Stimulation of the Thalamus for Epilepsy of Lennox-Gastaut Phenotype) trial. METHODS: Twelve LGS patients (mean age = 26.8 years) underwent bilateral CM-DBS implantation. Intraoperatively, simultaneous electroencephalogram (EEG) was recorded (range = 10-34 minutes) from scalp electrodes and bilateral thalamic DBS electrodes. Temporal onsets of epileptic discharges (generalized paroxysmal fast activity [GPFA] and slow spike-and-wave [SSW]) were manually marked on recordings from scalp (ie, "cortex") and thalamus (ie, CM-DBS electrodes). Phase transfer entropy (PTE) analysis quantified the degree of information transfer from cortex to thalamus within different frequency bands around GPFA events. RESULTS: GPFA was captured in eight of 12 patients (total event number across patients = 168, cumulative duration = 358 seconds). Eighty-six percent of GPFA events were seen in both scalp and thalamic recordings. In most events (83%), onset occurred first at scalp, with thalamic onset lagging by a median of 98 milliseconds (interquartile range = 78.5 milliseconds). Results for SSW were more variable and seen in 11 of 12 patients; 25.4% of discharges were noted in both scalp and thalamus. Of these, 74.5% occurred first at scalp, with a median lag of 75 milliseconds (interquartile range = 228 milliseconds). One to 0.5 seconds and 0.5-0 seconds before GPFA onset, PTE analysis showed significant energy transfer from scalp to thalamus in the delta (1-3 Hz) frequency band. For alpha (8-12 Hz) and beta (13-30 Hz) frequencies, PTE was greatest 1-0.5 seconds before GPFA onset. SIGNIFICANCE: Epileptic activity is detectable in CM of thalamus, confirming that this nucleus participates in the epileptic network of LGS. Temporal onset of GPFA mostly occurs earlier at the scalp than in the thalamus. This supports our prior EEG-functional magnetic resonance imaging results and provides further evidence for a cortically driven process underlying GPFA in LGS.


Subject(s)
Cerebral Cortex/physiopathology , Electroencephalography/methods , Epilepsy, Generalized/physiopathology , Intraoperative Neurophysiological Monitoring/methods , Lennox Gastaut Syndrome/physiopathology , Mediodorsal Thalamic Nucleus/physiopathology , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/surgery , Deep Brain Stimulation/methods , Epilepsy, Generalized/diagnostic imaging , Epilepsy, Generalized/surgery , Female , Humans , Lennox Gastaut Syndrome/diagnostic imaging , Lennox Gastaut Syndrome/surgery , Male , Mediodorsal Thalamic Nucleus/diagnostic imaging , Mediodorsal Thalamic Nucleus/surgery , Tomography, X-Ray Computed/methods , Young Adult
18.
Brain Topogr ; 33(5): 618-635, 2020 09.
Article in English | MEDLINE | ID: mdl-32623611

ABSTRACT

Head motion is a significant barrier to functional MRI (fMRI) in patients who are unable to tolerate awake scanning, including young children or those with cognitive and behavioural impairments. General anaesthesia minimises motion and ensures patient comfort, however the optimal anaesthesia regimen for fMRI in the paediatric setting is unknown. In this study, we tested the feasibility of anaesthetised fMRI in 11 patients (mean age = 9.8 years) with Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy associated with intellectual disability. fMRI was acquired during clinically-indicated MRI sessions using a synergistic anaesthesia regimen we typically administer for epilepsy neurosurgery: combined low-dose isoflurane (≤ 0.8% end-tidal concentration) with remifentanil (≤ 0.1 mcg/kg/min). Using group-level independent component analysis, we assessed the presence of resting-state networks by spatially comparing results in the anaesthetised patients to resting-state network templates from the 'Generation R' study of 536 similarly-aged non-anaesthetised healthy children (Muetzel et al. in Hum Brain Mapp 37(12):4286-4300, 2016). Numerous resting-state networks commonly studied in non-anaesthetised healthy children were readily identifiable in the anaesthetised patients, including the default-mode, sensorimotor, and frontoparietal networks. Independent component time-courses associated with these networks showed spectral characteristics suggestive of a neuronal origin of fMRI signal fluctuations, including high dynamic range and temporal frequency power predominantly below 0.1 Hz. These results demonstrate the technical feasibility of anaesthetised fMRI in children, suggesting that combined isoflurane-remifentanil anaesthesia may be an effective strategy to extend the emerging clinical applications of resting-state fMRI (for example, neurosurgical planning) to the variety of patient groups who may otherwise be impractical to scan.


Subject(s)
Anesthesia , Epilepsy , Intellectual Disability , Isoflurane , Child , Epilepsy/diagnostic imaging , Humans , Intellectual Disability/diagnostic imaging , Isoflurane/pharmacology , Magnetic Resonance Imaging , Remifentanil
19.
J Neurol Neurosurg Psychiatry ; 91(4): 339-349, 2020 04.
Article in English | MEDLINE | ID: mdl-31980515

ABSTRACT

OBJECTIVES: Deep brain stimulation (DBS) of the centromedian thalamic nucleus (CM) is an emerging treatment for multiple brain diseases, including the drug-resistant epilepsy Lennox-Gastaut syndrome (LGS). We aimed to improve neurosurgical targeting of the CM by: (1) developing a structural MRI approach for CM visualisation, (2) identifying the CM's neurophysiological characteristics using microelectrode recordings (MERs) and (3) mapping connectivity from CM-DBS sites using functional MRI (fMRI). METHODS: 19 patients with LGS (mean age=28 years) underwent presurgical 3T MRI using magnetisation-prepared 2 rapid acquisition gradient-echoes (MP2RAGE) and fMRI sequences; 16 patients proceeded to bilateral CM-DBS implantation and intraoperative thalamic MERs. CM visualisation was achieved by highlighting intrathalamic borders on MP2RAGE using Sobel edge detection. Mixed-effects analysis compared two MER features (spike firing rate and background noise) between ventrolateral, CM and parafasicular nuclei. Resting-state fMRI connectivity was assessed using implanted CM-DBS electrode positions as regions of interest. RESULTS: The CM appeared as a hyperintense region bordering the comparatively hypointense pulvinar, mediodorsal and parafasicular nuclei. At the group level, reduced spike firing and background noise distinguished CM from the ventrolateral nucleus; however, these trends were not found in 20%-25% of individual MER trajectories. Areas of fMRI connectivity included basal ganglia, brainstem, cerebellum, sensorimotor/premotor and limbic cortex. CONCLUSIONS: In the largest clinical trial of DBS undertaken in patients with LGS to date, we show that accurate targeting of the CM is achievable using 3T MP2RAGE MRI. Intraoperative MERs may provide additional localising features in some cases; however, their utility is limited by interpatient variability. Therapeutic effects of CM-DBS may be mediated via connectivity with brain networks that support diverse arousal, cognitive and sensorimotor processes.


Subject(s)
Deep Brain Stimulation/methods , Drug Resistant Epilepsy/therapy , Electrodes, Implanted , Intralaminar Thalamic Nuclei/diagnostic imaging , Adult , Drug Resistant Epilepsy/diagnostic imaging , Female , Humans , Intralaminar Thalamic Nuclei/surgery , Magnetic Resonance Imaging , Male
20.
Neurology ; 93(3): e215-e226, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31227617

ABSTRACT

OBJECTIVE: To identify brain regions underlying interictal generalized paroxysmal fast activity (GPFA), and their causal interactions, in children and adults with Lennox-Gastaut syndrome (LGS). METHODS: Concurrent scalp EEG-fMRI was performed in 2 separately analyzed patient groups with LGS: 10 children (mean age 8.9 years) scanned under isoflurane-remifentanil anesthesia and 15 older patients (mean age 31.7 years) scanned without anesthesia. Whole-brain event-related analysis determined GPFA-related activation in each group. Results were used as priors in a dynamic causal modeling (DCM) analysis comparing evidence for different neuronal hypotheses describing initiation and propagation of GPFA between cortex, thalamus, and brainstem. RESULTS: A total of 1,045 GPFA events were analyzed (cumulative duration 1,433 seconds). In both pediatric and older groups, activation occurred in distributed association cortical areas, as well as the thalamus and brainstem (p < 0.05, corrected for family-wise error). Activation was similar across individual patients with structural, genetic, and unknown etiologies of epilepsy, particularly in frontoparietal cortex. In both groups, DCM revealed that GPFA was most likely driven by prefrontal cortex, with propagation occurring first to the brainstem and then from brainstem to thalamus. CONCLUSIONS: We show reproducible evidence of a cortically driven process within the epileptic network of LGS. This network is present early (in children) and late (in older patients) in the course of the syndrome and across diverse etiologies of epilepsy, suggesting that LGS reflects shared "secondary network" involvement. A cortical-to-subcortical hierarchy is postulated whereby GPFA rapidly propagates from prefrontal cortex to the brainstem via extrapyramidal corticoreticular pathways, whereas the thalamus is engaged secondarily.


Subject(s)
Brain/diagnostic imaging , Lennox Gastaut Syndrome/diagnostic imaging , Adolescent , Adult , Age Factors , Brain/physiopathology , Brain Stem/diagnostic imaging , Brain Stem/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Child , Child, Preschool , Electroencephalography , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Functional Neuroimaging , Humans , Lennox Gastaut Syndrome/physiopathology , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiopathology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Thalamus/diagnostic imaging , Thalamus/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...