Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cryst Growth Des ; 24(8): 3218-3227, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38659661

ABSTRACT

One possible pathway toward reducing the cost of III-V solar cells is to remove them from their growth substrate by spalling fracture, and then reuse the substrate for the growth of multiple cells. Here we consider the growth of III-V cells on spalled GaAs(100) substrates, which typically have faceted surfaces after spalling. To facilitate the growth of high-quality cells, these faceted surfaces should be smoothed prior to cell growth. In this study, we show that these surfaces can be smoothed during organometallic vapor-phase epitaxy growth, but the choice of epilayer material and modification of the various surfaces by impurities/dopants greatly impacts whether or not the surface becomes smooth, and how rapidly the smoothing occurs. Representative examples are presented along with a discussion of the underlying growth processes. Although this work was motivated by solar cell growth, the methods are generally applicable to the growth of any III-V device on a nonplanar substrate.

2.
Science ; 378(6626): 1295-1300, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36548423

ABSTRACT

The development of highly stable and efficient wide-bandgap (WBG) perovskite solar cells (PSCs) based on bromine-iodine (Br-I) mixed-halide perovskite (with Br greater than 20%) is critical to create tandem solar cells. However, issues with Br-I phase segregation under solar cell operational conditions (such as light and heat) limit the device voltage and operational stability. This challenge is often exacerbated by the ready defect formation associated with the rapid crystallization of Br-rich perovskite chemistry with antisolvent processes. We combined the rapid Br crystallization with a gentle gas-quench method to prepare highly textured columnar 1.75-electron volt Br-I mixed WBG perovskite films with reduced defect density. With this approach, we obtained 1.75-electron volt WBG PSCs with greater than 20% power conversion efficiency, approximately 1.33-volt open-circuit voltage (Voc), and excellent operational stability (less than 5% degradation over 1100 hours of operation under 1.2 sun at 65°C). When further integrated with 1.25-electron volt narrow-bandgap PSC, we obtained a 27.1% efficient, all-perovskite, two-terminal tandem device with a high Voc of 2.2 volts.

3.
iScience ; 25(9): 104950, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36093056

ABSTRACT

The pursuit of ever-higher solar cell efficiencies has focused heavily on multijunction technologies. In tandem cells, subcells are typically either contacted via two terminals (2T) or four terminals (4T). Simulations show that the less-common three-terminal (3T) design may be comparable to 4T tandem cells in its compatibility with a range of materials, operating conditions, and methods for subcell integration, yet the 3T design circumvents shading losses of the 4T intermediate conductive layers. This study analyzes the performance of two superstrate 3T III-V-on-Si (III-V//Si) tandem cells: One has slightly greater current contribution from the Si bottom cell (GaInP//Si) and the other has substantially greater current contribution from the GaAs top cell (GaAs//Si). Our results show that both tandem cells exhibit the same efficiency (21.3%), thereby demonstrating that the third terminal allows for flexibility in the selection of the top cell material, similar to the 4T design.

4.
ACS Energy Lett ; 5(4): 1233-1242, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-38435798

ABSTRACT

Tandem and multijunction solar cells offer the only demonstrated path to terrestrial 1-sun solar cell efficiency over 30%. Three-terminal tandem (3TT) solar cells can overcome some of the limitations of two-terminal and four-terminal tandem solar cell designs. However, the coupled nature of the cells adds a degree of complexity to the devices themselves and the ways that their performance can be measured and reported. While many different configurations of 3TT devices have been proposed, there is no standard taxonomy to discuss the device structure or loading topology. This Perspective proposes a taxonomy for 3TT solar cells to enable a common nomenclature for discussing these devices and their performance. It also provides a brief history of three-terminal devices in the literature and demonstrates that many different 3TT devices can work at efficiencies above 30% if properly designed.

5.
ACS Omega ; 4(4): 7436-7447, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459840

ABSTRACT

We used high-throughput experimental screening methods to unveil the physical and chemical properties of Mn1-x Zn x O wurtzite alloys and identify their appropriate composition for effective water splitting application. The Mn1-x Zn x O thin films were synthesized using combinatorial pulsed laser deposition, permitting for characterization of a wide range of compositions with x varying from 0 to 1. The solubility limit of ZnO in MnO was determined using the disappearing phase method from X-ray diffraction and X-ray fluorescence data and found to increase with decreasing substrate temperature due to kinetic limitations of the thin-film growth at relatively low temperature. Optical measurements indicate the strong reduction of the optical band gap down to 2.1 eV at x = 0.5 associated with the rock salt-to-wurtzite structural transition in Mn1-x Zn x O alloys. Transmission electron microscopy results show evidence of a homogeneous wurtzite alloy system for a broad range of Mn1-x Zn x O compositions above x = 0.4. The wurtzite Mn1-x ZnxO samples with the 0.4 < x < 0.6 range were studied as anodes for photoelectrochemical water splitting, with a maximum current density of 340 µA cm-2 for 673 nm-thick films. These Mn1-x Zn x O films were stable in pH = 10, showing no evidence of photocorrosion or degradation after 24 h under water oxidation conditions. Doping Mn1-x Zn x O materials with Ga dramatically increases the electrical conductivity of Mn1-x Zn x O up to ∼1.9 S/cm for x = 0.48, but these doped samples are not active in water splitting. Mott-Schottky and UPS/XPS measurements show that the presence of dopant atoms reduces the space charge region and increases the number of mid-gap surface states. Overall, this study demonstrates that Mn1-x Zn x O alloys hold promise for photoelectrochemical water splitting, which could be enhanced with further tailoring of their electronic properties.

6.
ACS Appl Mater Interfaces ; 10(9): 8086-8091, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29441786

ABSTRACT

Transparent conductive adhesives (TCAs) can enable conductivity between two substrates, which is useful for a wide range of electronic devices. Here, we have developed a TCA composed of a polymer-particle blend with ethylene-vinyl acetate as the transparent adhesive and metal-coated flexible poly(methyl methacrylate) microspheres as the conductive particles that can provide conductivity and adhesion regardless of the surface texture. This TCA layer was designed to be nearly transparent, conductive in only the out-of-plane direction, and of practical adhesive strength to hold the substrates together. The series resistance was measured at 0.3 and 0.8 Ω cm2 for 8 and 0.2% particle coverage, respectively, while remaining over 92% was transparent in both cases. For applications in photovoltaic devices, such as mechanically stacked multijunction III-V/Si cells, a TCA with 1% particle coverage will have less than 0.5% power loss due to the resistance and less than 1% shading loss to the bottom cell.

7.
ACS Appl Mater Interfaces ; 7(3): 1396-400, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25562340

ABSTRACT

Silicon microwires grown by the vapor-liquid-solid process have attracted a great deal of interest as potential light absorbers for solar energy conversion. However, the research-scale techniques that have been demonstrated to produce ordered arrays of micro and nanowires may not be optimal for use as high-throughput processes needed for large-scale manufacturing. Herein we demonstrate the use of microimprint lithography to fabricate patterned templates for the confinement of an electrodeposited Cu catalyst for the vapor-liquid-solid (VLS) growth of Si microwires. A reusable polydimethylsiloxane stamp was used to pattern holes in silica sol-gels on silicon substrates, and the Cu catalyst was electrodeposited into the holes. Ordered arrays of crystalline p-type Si microwires were grown across the sol-gel-patterned substrates with materials quality and performance comparable to microwires fabricated with high-purity metal catalysts and cleanroom processing.

8.
Opt Express ; 19(4): 3316-31, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21369154

ABSTRACT

We develop a ray optics model of a silicon wire array geometry in an attempt to understand the very strong absorption previously observed experimentally in these arrays. Our model successfully reproduces the n2 ergodic limit for wire arrays in free space. Applying this model to a wire array on a Lambertian back reflector, we find an asymptotic increase in light trapping for low filling fractions. In this case, the Lambertian back reflector is acting as a wide acceptance angle concentrator, allowing the array to exceed the ergodic limit in the ray optics regime. While this leads to increased power per volume of silicon, it gives reduced power per unit area of wire array, owing to reduced silicon volume at low filling fractions. Upon comparison with silicon microwire experimental data, our ray optics model gives reasonable agreement with large wire arrays (4 µm radius), but poor agreement with small wire arrays (1 µm radius). This suggests that the very strong absorption observed in small wire arrays, which is not observed in large wire arrays, may be significantly due to wave optical effects.

9.
J Am Chem Soc ; 133(5): 1216-9, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21214239

ABSTRACT

Arrays of B-doped p-Si microwires, diffusion-doped with P to form a radial n(+) emitter and subsequently coated with a 1.5-nm-thick discontinuous film of evaporated Pt, were used as photocathodes for H(2) evolution from water. These electrodes yielded thermodynamically based energy-conversion efficiencies >5% under 1 sun solar simulation, despite absorbing less than 50% of the above-band-gap incident photons. Analogous p-Si wire-array electrodes yielded efficiencies <0.2%, largely limited by the low photovoltage generated at the p-Si/H(2)O junction.

11.
Nat Mater ; 9(3): 239-44, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20154692

ABSTRACT

Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the array's volume. Here, we show that arrays having less than 5% areal fraction of wires can achieve up to 96% peak absorption, and that they can absorb up to 85% of day-integrated, above-bandgap direct sunlight. In fact, these arrays show enhanced near-infrared absorption, which allows their overall sunlight absorption to exceed the ray-optics light-trapping absorption limit for an equivalent volume of randomly textured planar Si, over a broad range of incidence angles. We furthermore demonstrate that the light absorbed by Si wire arrays can be collected with a peak external quantum efficiency of 0.89, and that they show broadband, near-unity internal quantum efficiency for carrier collection through a radial semiconductor/liquid junction at the surface of each wire. The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.

12.
Science ; 327(5962): 185-7, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20056886

ABSTRACT

Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen(2+/+) electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.

SELECTION OF CITATIONS
SEARCH DETAIL
...