Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37367112

ABSTRACT

Self-assembling peptides are a promising biomaterial with potential applications in medical devices and drug delivery. In the right combination of conditions, self-assembling peptides can form self-supporting hydrogels. Here, we describe how balancing attractive and repulsive intermolecular forces is critical for successful hydrogel formation. Electrostatic repulsion is tuned by altering the peptide's net charge, and intermolecular attractions are controlled through the degree of hydrogen bonding between specific amino acid residues. We find that an overall net peptide charge of +/-2 is optimal to facilitate the assembly of self-supporting hydrogels. If the net peptide charge is too low then dense aggregates form, while a high molecular charge inhibits the formation of larger structures. At a constant charge, altering the terminal amino acids from glutamine to serine decreases the degree of hydrogen bonding within the assembling network. This tunes the viscoelastic properties of the gel, reducing the elastic modulus by two to three orders of magnitude. Finally, hydrogels could be formed from glutamine-rich, highly charged peptides by mixing the peptides in combinations with a resultant net charge of +/-2. These results illustrate how understanding and controlling self-assembly mechanisms through modulating intermolecular interactions can be exploited to derive a range of structures with tuneable properties.

2.
Biomater Sci ; 10(4): 874-891, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34951410

ABSTRACT

Back pain affects a person's health and mobility as well as being associated with large health and social costs. Lower back pain is frequently caused by degeneration of the intervertebral disc. Current operative and non-operative treatments are often ineffective and expensive. Nucleus augmentation is designed to be a minimally invasive method of restoring the disc to its native healthy state by restoring the disc height, and mechanical and/or biological properties. The majority of the candidate materials for nucleus augmentation are injectable hydrogels. In this review, we examine the materials that are currently under investigation for nucleus augmentation, and compare their ability to meet the design requirements for this application. Specifically, the delivery of the material into the disc, the mechanical properties of the material and the biological compatibility are examined. Recommendations for future testing are also made.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Humans , Hydrogels , Intervertebral Disc Degeneration/therapy
3.
Adv Healthc Mater ; 10(11): e2001998, 2021 06.
Article in English | MEDLINE | ID: mdl-33943034

ABSTRACT

Self-assembling hydrogels are promising materials for regenerative medicine and tissue engineering. However, designing hydrogels that replicate the 3-4 order of magnitude variation in soft tissue mechanics remains a major challenge. Here hybrid hydrogels are investigated formed from short self-assembling ß-fibril peptides, and the glycosaminoglycan chondroitin sulfate (CS), chosen to replicate physical aspects of proteoglycans, specifically natural aggrecan, which provides structural mechanics to soft tissues. Varying the peptide:CS compositional ratio (1:2, 1:10, or 1:20) can tune the mechanics of the gel by one to two orders of magnitude. In addition, it is demonstrated that at any fixed composition, the gel shear modulus can be tuned over approximately two orders of magnitude through varying the initial vortex mixing time. This tuneability arises due to changes in the mesoscale structure of the gel network (fibril width, length, and connectivity), giving rise to both shear-thickening and shear-thinning behavior. The resulting hydrogels range in shear elastic moduli from 0.14 to 220 kPa, mimicking the mechanical variability in a range of soft tissues. The high degree of discrete tuneability of composition and mechanics in these hydrogels makes them particularly promising for matching the chemical and mechanical requirements of different applications in tissue engineering and regenerative medicine.


Subject(s)
Hydrogels , Proteoglycans , Hydrodynamics , Peptides , Tissue Engineering
4.
Biochem J ; 460(2): 177-85, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24654932

ABSTRACT

Auxin gradients are established and maintained by polarized distribution of auxin transporters that undergo constitutive endocytic recycling from the PM (plasma membrane) and are essential for the gravitropic response in plants. The present study characterizes an inhibitor of endomembrane protein trafficking, TE1 (trafficking and endocytosis inhibitor 1/TENin1) that reduces gravitropic root bending in Arabidopsis thaliana seedlings. Short-term TE1 treatment causes accumulation of PM proteins, including the BR (brassinosteroid) receptor BRI1 (BR insensitive 1), PIP2a (PM intrinsic protein 2a) and the auxin transporter PIN2 (PIN-FORMED 2) in a PVC (pre-vacuolar related compartment), which is sensitive to BFA (Brefeldin A). This compound inhibits endocytosis from the PM and promotes trafficking to the vacuole, consistent with inhibition of retrieval of proteins to the TGN (trans-Golgi network) from the PVC and the PM. However, trafficking of newly synthesized proteins to the PM is unaffected. The short-term protein trafficking inhibition and long-term effect on plant growth and survival caused by TE1 were fully reversible upon drug washout. Structure-activity relationship studies revealed that only minor modifications were possible without loss of biological activity. Diversity in Arabidopsis ecotypes was also exploited to identify two Arabidopsis accessions that display reduced sensitivity to TE1. This compound and the resistant Arabidopsis accessions may be used as a resource in future studies to better understand endomembrane trafficking in plants.


Subject(s)
Arabidopsis Proteins/physiology , Endocytosis/drug effects , Gravitropism/drug effects , Protein Transport/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Plant Roots/drug effects , Plant Roots/physiology , Pyridinium Compounds/metabolism , Quaternary Ammonium Compounds/metabolism , Seedlings/drug effects , Vacuoles/metabolism , trans-Golgi Network/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...