Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 46(5): 1057-1064, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28991986

ABSTRACT

Nitrogen (N) management strategies that maintain high crop productivity with reduced water quality impacts are needed for tile-drained landscapes of the US Midwest. The objectives of this study were to determine the effect of N application rate, timing, and fall nitrapyrin addition on tile drainage nitrate losses, corn ( L.) yield, N recovery efficiency, and postharvest soil nitrate content over 3 yr in a corn-soybean [ (L.) Merr.] rotation. In addition to an unfertilized control, the following eight N treatments were applied as anhydrous ammonia in a replicated, field-scale experiment with both corn and soybean phases present each year in Illinois: fall and spring applications of 78, 156, and 234 kg N ha, fall application of 156 kg N ha + nitrapyrin, and sidedress (V5-V6) application of 156 kg N ha. Across the 3-yr study period, increases in flow-weighted NO concentrations were found with increasing N rate for fall and spring N applications, whereas N load results were variable. At the same N rate, spring vs. fall N applications reduced flow-weighted NO concentrations only in the corn-soybean-corn rotation. Fall nitrapyrin and sidedress N treatments did not decrease flo8w-weighted NO concentrations in either rotation compared with fall and spring N applications, respectively, or increase corn yield, crop N uptake, or N recovery efficiency in any year. This study indicates that compared with fall N application, spring and sidedress N applications (for corn-soybean-corn) and sidedress N applications (for soybean-corn-soybean) reduced 3-yr mean flow-weighted NO concentrations while maintaining yields.


Subject(s)
Agriculture , Nitrates/analysis , Zea mays/growth & development , Fertilizers , Nitrogen
2.
J Biol Inorg Chem ; 19(4-5): 555-63, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24378983

ABSTRACT

We present a new approach to visualizing and quantifying the displacement of segments of Pseudomonas aeruginosa azurin in the early stages of denaturation. Our method is based on a geometrical method developed previously by the authors, and elaborated extensively for azurin. In this study, we quantify directional changes in three α-helical regions, two regions having ß-strand residues, and three unstructured regions of azurin. Snapshots of these changes as the protein unfolds are displayed and described quantitatively by introducing a scaling diagnostic. In accord with molecular dynamics simulations, we show that the long α-helix in azurin (residues 54-67) is displaced from the polypeptide scaffolding and then pivots first in one direction, and then in the opposite direction as the protein continues to unfold. The two ß-strand chains remain essentially intact and, except in the earliest stages, move in tandem. We show that unstructured regions 72-81 and 84-91, hinged by ß-strand residues 82-83, pivot oppositely. The region comprising residues 72-91 (40 % hydrophobic and 16 % of the 128 total residues) forms an effectively stationary region that persists as the protein unfolds. This static behavior is a consequence of a dynamic balance between the competing motion of two segments, residues 72-81 and 84-91.


Subject(s)
Azurin/chemistry , Azurin/metabolism , Protein Folding , Protein Structure, Secondary , Pseudomonas aeruginosa/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...