Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 696
Filter
1.
Sociol Health Illn ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963685

ABSTRACT

Smiling is an embodied and complex social act. Smiling is presented as facilitating individual health and wellbeing, but the value placed on smiling raises questions about structural conditions acting on the body. While smiling has been considered sociologically, psychologically and historically, we argue that further exploration of the embodied smile offers fruitful avenues for future research. This article attempts to advance understanding of the smile and its importance by: (I) Bringing together literature on smiling as a social act and smiling as embodied. (II) Systematically identifying key themes, which recognise sociological insights and the relevance of oral health. (III) Pointing to useful directions for future sociological research into smiling. In this article, we review literature on body techniques; impression management and social interaction; gender, race and smiling; and emotional, aesthetic and affective labour. We move on to embodiment, considering the mouth as a body project and in relation to the ageing body, before reflecting on the significance of oral health and dentistry. We highlight future directions for sociological research on smiling, building on eight interrelated and cross-cutting themes: norms and expectations, aesthetic ideals, self and identity, health and wellbeing, body work, commodification and labour, inclusion and exclusion and resistance.

2.
Article in English | MEDLINE | ID: mdl-38989581

ABSTRACT

BACKGROUND: In early atherosclerosis, circulating LDLs (low-density lipoproteins) traverse individual endothelial cells by an active process termed transcytosis. The CANTOS trial treated advanced atherosclerosis using a blocking antibody for IL-1ß (interleukin-1ß); this significantly reduced cardiovascular events. However, whether IL-1ß regulates early disease, particularly LDL transcytosis, remains unknown. METHODS: We used total internal reflection fluorescence microscopy to quantify transcytosis by human coronary artery endothelial cells exposed to IL-1ß. To investigate transcytosis in vivo, we injected wild-type and knockout mice with IL-1ß and LDL to visualize acute LDL deposition in the aortic arch. RESULTS: Exposure to picomolar concentrations of IL-1ß induced transcytosis of LDL but not of albumin by human coronary artery endothelial cells. Surprisingly, expression of the 2 known receptors for LDL transcytosis, ALK-1 (activin receptor-like kinase-1) and SR-BI (scavenger receptor BI), was unchanged or decreased. Instead, IL-1ß increased the expression of the LDLR (LDL receptor); this was unexpected because LDLR is not required for LDL transcytosis. Overexpression of LDLR had no effect on basal LDL transcytosis. However, knockdown of LDLR abrogated the effect of IL-1ß on transcytosis rates while the depletion of Cav-1 (caveolin-1) did not. Since LDLR was necessary but overexpression had no effect, we reasoned that another player must be involved. Using public RNAseq data to curate a list of Rab GTPases affected by IL-1ß, we identified Rab27a. Overexpression of Rab27a alone had no effect on basal transcytosis, but its knockdown prevented induction by IL-1ß. This was phenocopied by depletion of the Rab27a effector JFC1. In vivo, IL-1ß increased LDL transcytosis in the aortic arch of wild-type but not Ldlr-/- or Rab27a-deficient mice. The JFC1 inhibitor nexinhib20 also blocked IL-1ß-induced LDL accumulation in the aorta. CONCLUSIONS: IL-1ß induces LDL transcytosis by a distinct pathway requiring LDLR and Rab27a; this route differs from basal transcytosis. We speculate that induction of transcytosis by IL-1ß may contribute to the acceleration of early disease.

3.
Acta Biomater ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009209

ABSTRACT

Oxygen (O2)-delivering tissue substitutes have shown tremendous potential for enhancing tissue regeneration, maturation, and healing. As O2 is both a metabolite and powerful signaling molecule, providing controlled delivery is crucial for optimizing its beneficial effects in the treatment of critical-sized injuries. Here, we report the design and fabrication of 3D-printed, biodegradable, O2-generating bone scaffold comprising calcium peroxide (CPO) that once hydrolytically activated, provides long-term generation of oxygen at a controlled, concentration-dependent manner, and polycaprolactone (PCL), a hydrophobic polymer that regulate the interaction of CPO with water, preventing burst release of O2 at early time points. When anoxic conditions were simulated in vitro, CPO-PCL scaffolds maintained the survival and proliferation of human adipose-derived stem/stromal cells (hASCs) relative to PCL-only controls. We assessed the in vivo osteogenic efficacy of hASC-seeded CPO-PCL scaffolds implanted in a non-healing critical-sized 4-mm calvarial defects in nude mice for 8 weeks. Even without exogenous osteoinductive factors, CPO-PCL scaffolds demonstrated increased new bone volume compared to PCL-only scaffolds as verified by both microcomputed tomography analysis and histological assessments. Lastly, we employed a quantitative 3D lightsheet microscopy platform to determine that O2-generating scaffolds had similar vascular volumes with slightly higher presence of CD31hiEmcnhi pro-osteogenic, type H vessels and increased number of Osterix+ skeletal progenitor cells relative to PCL-only scaffolds. In summary, 3D-printed O2 generating CPO-PCL scaffolds with tunable O2 release rates provide a facile, customizable strategy for effectively treating, craniofacial bone defects. STATEMENT OF SIGNIFICANCE: Oxygen(O2)-delivering bone substitutes show promise in defect repair applications by supplying O2 to the cells within or around the graft, improving cell survivability and enhancing bone matrix mineralization. A novel O2-generating bone scaffold has been 3D printed for the first-time which ensures patient and defect specificity. 3D printed calcium peroxide-polycaprolactone (CPO-PCL) bone scaffold provides uninterrupted O2 supply for 22 days allowing cell survival in deprived O2 and nutrient conditions. For the first time, O2-driven bone regenerative environment in mice calvaria has been captured by light-sheet imaging which illuminates abundance of Osterix+ cells, angiogenesis at a single cell resolution indicating active site of bone remodeling and growth in the presence of O2.

4.
PhytoKeys ; 243: 47-61, 2024.
Article in English | MEDLINE | ID: mdl-38938542

ABSTRACT

Myrsinecirrhosa Lorence & K.R.Wood (Primulaceae), a new single-island endemic shrub species from Kaua'i, Hawaiian Islands, is described and illustrated. Notes on its distribution, ecology and conservation status are included. The new species is known from an area with ca. 45 individuals, where it is restricted to the remote central windward region of Kaua'i in open bogs and along open windy ridges. Suggested IUCN Red List status is CR (Critically Endangered). It differs from its Kaua'i congeners by its longer petals and narrowly elliptic leaves with strongly undulate margins and tendril-like apex. Phylogenetic analysis using RADseq data supports the recognition of this new species.

5.
Circ Res ; 135(2): 335-349, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38828596

ABSTRACT

BACKGROUND: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS: We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS: Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDL particles relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS: Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.


Subject(s)
Apolipoprotein A-I , Atherosclerosis , Diabetes Mellitus, Type 1 , Receptors, LDL , Animals , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/blood , Atherosclerosis/pathology , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/blood , Mice , Receptors, LDL/genetics , Receptors, LDL/deficiency , Receptors, LDL/metabolism , Apolipoprotein A-I/blood , Apolipoprotein A-I/metabolism , Male , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol Ester Transfer Proteins/blood , Mice, Knockout , Female , Mice, Inbred C57BL , Lipoproteins, HDL/blood , Lipoproteins, HDL/metabolism , Mice, Transgenic , Apolipoprotein B-100/metabolism , Apolipoprotein B-100/genetics , Apolipoprotein B-100/blood , Middle Aged , Disease Models, Animal , Adult
6.
ACS Biomater Sci Eng ; 10(6): 3896-3908, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38748191

ABSTRACT

Microfluidic spinning is emerging as a useful technique in the fabrication of alginate fibers, enabling applications in drug screening, disease modeling, and disease diagnostics. In this paper, by capitalizing on the benefits of aqueous two-phase systems (ATPS) to produce diverse alginate fiber forms, we introduce an ATPS-Spinning platform (ATPSpin). This ATPS-enabled method efficiently circumvents the rapid clogging challenges inherent to traditional fiber production techniques by regulating the interaction between alginate and cross-linking agents like Ba2+ ions. By varying system parameters under the guidance of a regime map, our system produces several fiber forms─solid, hollow, and droplet-filled─consistently and reproducibly from a single device. We demonstrate that the resulting alginate fibers possess distinct features, including biocompatibility. We also encapsulate HEK293 cells in the microfibers as a proof-of-concept that this versatile microfluidic fiber generation platform may have utility in tissue engineering and regenerative medicine applications.


Subject(s)
Alginates , Alginates/chemistry , Humans , HEK293 Cells , Microfluidics/methods , Microfluidics/instrumentation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Tissue Engineering/methods , Biocompatible Materials/chemistry
7.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617372

ABSTRACT

Calvarial nerves, along with vasculature, influence skull formation during development and following injury, but it remains unclear how calvarial nerves are spatially distributed during postnatal growth and aging. Studying the spatial distribution of nerves in the skull remains challenging due to a lack of methods to image and quantify 3D structures in intact bone. To visualize calvarial 3D neurovascular architecture, we imaged nerves and endothelial cells with lightsheet microscopy. We employed machine-learning-based segmentation to facilitate high-resolution characterization from post-natal day 0 (P0) to Week 80 (80wk). We found that TUBB3+ nerve density decreased with aging with the frontal bone demonstrating earlier onset age-related nerve loss than the parietal bone. In addition, nerves in the periosteum and dura mater exhibited similar yet distinct temporal patterns of nerve growth and loss. While no difference was observed in TUBB3+ nerves during skeletal maturation (P0 → 12wk), we did observe an increase in the volume of unmyelinated nerves in the dura mater. Regarding calvarial vasculature, larger CD31hiEmcn- vessel density increased with aging, while CD31hiEmcnhi vessel density was reduced. For all nerve markers studied, calvarial nerves maintained a preferential spatial association with CD31hiEmcnhi vessels that decreased with aging. Additionally, we used a model of Apert syndrome that demonstrates early coronal suture fusion to explore the impact of suture-related disease on neurovascular architecture. We identified a mild dysregulation of dural nerves and minor shifts in vessel populations. Collectively, this 3D, spatiotemporal characterization of calvarial nerves throughout the lifespan and provides new insights into age-induced neurovascular architecture.

8.
Bioengineering (Basel) ; 11(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38671729

ABSTRACT

Static cold storage (SCS), the current clinical gold standard for organ preservation, provides surgeons with a limited window of time between procurement and transplantation. In vascularized composite allotransplantation (VCA), this time limitation prevents many viable allografts from being designated to the best-matched recipients. Machine perfusion (MP) systems hold significant promise for extending and improving organ preservation. Most of the prior MP systems for VCA have been built and tested for large animal models. However, small animal models are beneficial for high-throughput biomolecular investigations. This study describes the design and development of a multiparametric bioreactor with a circuit customized to perfuse rat abdominal wall VCAs. To demonstrate its concept and functionality, this bioreactor system was employed in a small-scale demonstrative study in which biomolecular metrics pertaining to graft viability were evaluated non-invasively and in real time. We additionally report a low incidence of cell death from ischemic necrosis as well as minimal interstitial edema in machine perfused grafts. After up to 12 h of continuous perfusion, grafts were shown to survive transplantation and reperfusion, successfully integrating with recipient tissues and vasculature. Our multiparametric bioreactor system for rat abdominal wall VCA provides an advanced framework to test novel techniques to enhance normothermic and sub-normothermic VCA preservations in small animal models.

9.
Curr Dev Nutr ; 8(Suppl 1): 102027, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38476725

ABSTRACT

Populations in low- and middle-income countries (LMIC) typically consume less than the recommended daily amount of protein. Alternative protein (AP) sources could help combat malnutrition, but this requires careful consideration of elements needed to further establish AP products in LMIC. Key considerations include technological, nutritional, safety, social, and economic challenges. This perspective analyzes these considerations in achieving dietary diversity in LMIC, using a combination of traditional and novel protein sources with high nutritional value, namely, soy, mycoprotein, and cultivated meat. Technological approaches to modulate the technofunctionality and bitter off-tastes of plant-sourced proteins facilitate processing and ensure consumer acceptance. Economic considerations for inputs, infrastructure for production, and transportation represent key elements to scale up AP. Dietary diversification is indispensable and LMIC cannot rely on plant proteins alone to provide adequate protein intake sustainably. Investments in infrastructure and innovation are urgently needed to offer diverse sources of protein in LMIC.

10.
Sci Adv ; 10(13): eadm9859, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536921

ABSTRACT

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Glutamine/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Enzyme Inhibitors/therapeutic use , Mutation
11.
J Lipid Res ; 65(4): 100530, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479648

ABSTRACT

Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.


Subject(s)
Apolipoprotein A-I , Lipoproteins, HDL , Lipoproteins, LDL , Transcytosis , Animals , Humans , Male , Mice , Apolipoprotein A-I/metabolism , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Protein Binding , Scavenger Receptors, Class B/metabolism
12.
Midwifery ; 132: 103952, 2024 May.
Article in English | MEDLINE | ID: mdl-38442530

ABSTRACT

AIM: This study aimed to explore student midwives' theoretical knowledge of intrapartum intermittent auscultation, their confidence in, and their experience of this mode of fetal monitoring. DESIGN AND SETTING: An online cross-section survey with closed and open questions. Descriptive statistics were used to analyse participants' intermittent auscultation knowledge, confidence, and experience. Reflexive thematic analysis was used to identify patterns within the free text about participants' experiences. PARTICIPANTS: Undergraduate midwifery students (n = 303) from Nursing and Midwifery Council-approved educational institutions within the United Kingdom. FINDINGS: Most participants demonstrated good theoretical knowledge. They had witnessed the technique being used in clinical practice, and when performed, the practice was reported to be in line with national guidance. In closed questions, participants reported feeling confident in their intermittent auscultation skills; however, these data contrasted with free-text responses. CONCLUSION: This cross-sectional survey found that student midwives possess adequate knowledge of intermittent auscultation. However, reflecting individual clinical experiences, their confidence in their ability to perform intermittent auscultation varied. A lack of opportunity to practice intermittent auscultation, organisational culture, and midwives' preferences have caused student midwives to question their capabilities with this essential clinical skill, leaving some with doubt about their competency close to registration.


Subject(s)
Clinical Competence , Students, Nursing , Humans , Cross-Sectional Studies , Female , United Kingdom , Students, Nursing/statistics & numerical data , Students, Nursing/psychology , Surveys and Questionnaires , Adult , Clinical Competence/standards , Clinical Competence/statistics & numerical data , Pregnancy , Nurse Midwives/statistics & numerical data , Nurse Midwives/education , Nurse Midwives/psychology , Heart Rate, Fetal/physiology , Midwifery/education , Midwifery/methods , Midwifery/statistics & numerical data , Education, Nursing, Baccalaureate/methods , Auscultation/methods , Auscultation/statistics & numerical data , Auscultation/standards
13.
Diabetologia ; 67(6): 1138-1154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489029

ABSTRACT

AIMS/HYPOTHESIS: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS: Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION: Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.


Subject(s)
Capillary Permeability , Diabetes Mellitus, Type 2 , Extracellular Vesicles , Animals , Extracellular Vesicles/metabolism , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Humans , Male , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Proteomics , Mice, Inbred C57BL
14.
Pediatrics ; 153(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38410833

ABSTRACT

BACKGROUND AND OBJECTIVES: The American Academy of Pediatrics endorses metabolic and bariatric surgery (MBS) as a safe and effective treatment of severe obesity in children with class 3 obesity or with class 2 obesity and qualifying comorbidities. The study objective was to determine eligibility and characteristics of adolescents who qualify for MBS based on American Academy of Pediatrics guidelines. METHODS: This retrospective cohort study analyzed electronic health record data of 603 051 adolescents aged 13 to 17 years between January 1, 2018, and December 31, 2021. Centers for Disease Control and Prevention criteria were used to define obesity classes 2 and 3. Multivariable logistic regression was used to evaluate the factors associated with meeting MBS eligibility criteria. RESULTS: Of the 603 041 adolescents evaluated, 22.2% had obesity (12.9% class 1, 5.4% class 2, and 3.9% class 3). The most frequently diagnosed comorbid conditions were gastroesophageal reflux disease (3.2%), hypertension (0.5%), and nonalcoholic fatty liver disease (0.5%). Among adolescents with class 2 obesity, 9.1% had 1 or more comorbidities qualifying for MBS, and 4.4% of all adolescents met the eligibility criteria for MBS. In multivariable modeling, males, Black and Hispanic adolescents, and those living in more deprived neighborhoods were more likely to meet MBS eligibility criteria. CONCLUSIONS: Overall, 1 in 23 adolescents met the eligibility criteria for MBS. Demographic and social determinants were associated with a higher risk for meeting these criteria. The study suggests that the health care system may face challenges in accommodating the demand for MBS among eligible adolescents.


Subject(s)
Bariatric Surgery , Obesity, Morbid , Pediatric Obesity , United States/epidemiology , Male , Adolescent , Humans , Child , Prevalence , Pediatric Obesity/epidemiology , Pediatric Obesity/surgery , Retrospective Studies , Obesity, Morbid/epidemiology , Obesity, Morbid/surgery
15.
Int J Hyperthermia ; 41(1): 2313492, 2024.
Article in English | MEDLINE | ID: mdl-38369302

ABSTRACT

BACKGROUND: Despite the theoretical advantages of treating metastatic bone disease with microwave ablation (MWA), there are few reports characterizing microwave absorption and bioheat transfer in bone. This report describes a computational modeling-based approach to simulate directional microwave ablation (dMWA) in spine, supported by ex vivo and pilot in vivo experiments in porcine vertebral bodies. MATERIALS AND METHODS: A 3D computational model of microwave ablation within porcine vertebral bodies was developed. Ex vivo porcine vertebra experiments using a dMWA applicator measured temperatures approximately 10.1 mm radially from the applicator in the direction of MW radiation (T1) and approximately 2.4 mm in the contra-lateral direction (T2). Histologic assessment of ablated ex vivo tissue was conducted and experimental results compared to simulations. Pilot in vivo experiments in porcine vertebral bodies assessed ablation zones histologically and with CT and MRI. RESULTS: Experimental T1 and T2 temperatures were within 3-7% and 11-33% of simulated temperature values. Visible ablation zones, as indicated by grayed tissue, were smaller than those typical in other soft tissues. Posthumous MRI images of in vivo ablations showed hyperintensity. In vivo experiments illustrated the technical feasibility of creating directional microwave ablation zones in porcine vertebral body. CONCLUSION: Computational models and experimental studies illustrate the feasibility of controlled dMWA in bone tissue.


Subject(s)
Ablation Techniques , Catheter Ablation , Radiofrequency Ablation , Swine , Animals , Ablation Techniques/methods , Microwaves/therapeutic use , Computer Simulation , Spine/surgery , Liver/surgery , Catheter Ablation/methods
16.
Circ Res ; 134(3): 269-289, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38174557

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) contain bioactive cargo including miRNAs and proteins that are released by cells during cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels, interfacing with cells in the circulation and vascular wall. It is unknown whether ECs release EVs capable of governing recipient cells within these 2 separate compartments. Given their boundary location, we propose ECs use bidirectional release of distinct EV cargo in quiescent (healthy) and activated (atheroprone) states to communicate with cells within the circulation and blood vessel wall. METHODS: EVs were isolated from primary human aortic ECs (plate and transwell grown; ±IL [interleukin]-1ß activation), quantified, visualized, and analyzed by miRNA transcriptomics and proteomics. Apical and basolateral EC-EV release was determined by miRNA transfer, total internal reflection fluorescence and electron microscopy. Vascular reprogramming (RNA sequencing) and functional assays were performed on primary human monocytes or smooth muscle cells±EC-EVs. RESULTS: Activated ECs increased EV release, with miRNA and protein cargo related to atherosclerosis. EV-treated monocytes and smooth muscle cells revealed activated EC-EV altered pathways that were proinflammatory and atherogenic. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, activated basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and smooth muscle cells, respectively, with functional assays and in vivo imaging supporting this concept. CONCLUSIONS: Demonstrating that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance the design of endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.


Subject(s)
Atherosclerosis , Extracellular Vesicles , MicroRNAs , Humans , Endothelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Cell Communication , Atherosclerosis/metabolism
17.
PhytoKeys ; 237: 141-151, 2024.
Article in English | MEDLINE | ID: mdl-38292076

ABSTRACT

Cyrtandraobliquifolia K.R. Wood & W.L. Wagner (Gesneriaceae), a new shrub species known only from Kaua'i, Hawaiian Islands, is described and illustrated with notes on its distribution, ecology, and conservation status. The new species is morphologically most similar to Cyrtandrawawrae C.B. Clarke but differs by its unique combination of oblique, non-peltate, auriculate leaf bases, more deeply divided calyx lobes, inflorescence with fewer flowers and lacking profusely umbellate cymes. Cyrtandraobliquifolia is known from only two localities which have undergone severe habitat degradation from landslides and invasive plants and animals and is determined to be Critically Endangered (CR) when evaluated under IUCN criteria.

18.
Angiogenesis ; 27(1): 105-119, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38032405

ABSTRACT

The healing of calvarial bone defects is a pressing clinical problem that involves the dynamic interplay between angiogenesis and osteogenesis within the osteogenic niche. Although structural and functional vascular remodeling (i.e., angiogenic evolution) in the osteogenic niche is a crucial modulator of oxygenation, inflammatory and bone precursor cells, most clinical and pre-clinical investigations have been limited to characterizing structural changes in the vasculature and bone. Therefore, we developed a new multimodality imaging approach that for the first time enabled the longitudinal (i.e., over four weeks) and dynamic characterization of multiple in vivo functional parameters in the remodeled vasculature and its effects on de novo osteogenesis, in a preclinical calvarial defect model. We employed multi-wavelength intrinsic optical signal (IOS) imaging to assess microvascular remodeling, intravascular oxygenation (SO2), and osteogenesis; laser speckle contrast (LSC) imaging to assess concomitant changes in blood flow and vascular maturity; and micro-computed tomography (µCT) to validate volumetric changes in calvarial bone. We found that angiogenic evolution was tightly coupled with calvarial bone regeneration and corresponded to distinct phases of bone healing, such as injury, hematoma formation, revascularization, and remodeling. The first three phases occurred during the initial two weeks of bone healing and were characterized by significant in vivo changes in vascular morphology, blood flow, oxygenation, and maturity. Overall, angiogenic evolution preceded osteogenesis, which only plateaued toward the end of bone healing (i.e., four weeks). Collectively, these data indicate the crucial role of angiogenic evolution in osteogenesis. We believe that such multimodality imaging approaches have the potential to inform the design of more efficacious tissue-engineering calvarial defect treatments.


Subject(s)
Bone Regeneration , Skull , X-Ray Microtomography , Skull/diagnostic imaging , Skull/blood supply , Skull/injuries , Bone Regeneration/physiology , Osteogenesis/physiology , Wound Healing
19.
Otol Neurotol ; 45(2): 195-199, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38152027

ABSTRACT

INTRODUCTION: Pulsatile tinnitus (PT) occurs in many but not all patients with idiopathic intracranial hypertension (IIH). It is poorly understood why some patients with IIH develop PT, yet others do not. The purpose of this study was to determine if any clinical findings differ between those with and without PT in IIH, potentially shedding light on a pathophysiologic mechanism. METHODS: Age-matched cohort analysis of patients with documented IIH and presence or absence of PT was performed, collecting data including body mass index (BMI), blood pressure, visual acuity, cerebrospinal fluid (CSF) opening pressure, sleep apnea, migraines, and transient visual obscurations, among others. Independent-sample t test and χ2 test were used to analyze continuous and binary variables, respectively, with multivariate analysis conducted including variables statistically significant on univariate analysis. RESULTS: Eighty subjects with IIH met the inclusion criteria (40 PT+, 40 PT-). CSF opening pressure showed no significant difference between the two groups. The PT+ cohort was found to have an average BMI of 45.1 kg/m 2 , which was significantly higher than the PT- group (37.7 kg/m 2 ; p = 0.0023). PT+ pulse pressure (60.1 mm Hg) was also significantly higher than the PT- group (51.6 mm Hg; p = 0.019). PT+ patients were also significantly more likely to have sleep apnea ( p < 0.001) and migraines ( p = 0.0036). Multiple logistic regression revealed an adjusted odds ratio of 13.9 for sleep apnea, 4.1 for migraines, and 1.01 for every increase in unit of BMI. CONCLUSION: Among patients with IIH, presence of PT is associated with higher BMI and pulse pressure, and increased incidence of sleep apnea and migraines. Given no significant difference in CSF pressures between the two groups, PT may not be a product of increased disease severity but may be related to sequelae of obesity, such as increased pulse pressure and sleep apnea.


Subject(s)
Migraine Disorders , Pseudotumor Cerebri , Sleep Apnea Syndromes , Tinnitus , Humans , Pseudotumor Cerebri/complications , Cohort Studies , Tinnitus/etiology , Migraine Disorders/complications , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/epidemiology
20.
Article in English | MEDLINE | ID: mdl-38083526

ABSTRACT

High throughput testing of clinically representative Pt electrodes requires an inexpensive, efficient method of production. The aim of this study was to develop a facile platinum (Pt) model electrode (PME) and assess its production process, stability, and reproducibility. In this study a new model electrode was developed using representative substrates and dimensions as state-of-the-art electrode arrays used for neural stimulation. It was found that the PME is a highly reproducible robust system with similar electrochemical performance but with lower variability than other neural prosthetic arrays.Clinical Relevance- As an estimate these novel model electrodes cost 300 times less than a cochlear implant, can be manufactured in a tenth of the time and with a less than 10% failure rate. It is expected that model electrodes with low variability of electrical properties will significantly improve preclinical validation testing of electrochemical stimulation, surface modifications, and coatings.


Subject(s)
Cochlear Implants , Platinum , Platinum/chemistry , Reproducibility of Results , Electric Impedance , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...