Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 1(4): 452-468, 2020 04.
Article in English | MEDLINE | ID: mdl-35121966

ABSTRACT

Advanced and metastatic tumors with complex treatment histories drive cancer mortality. Here we describe the POG570 cohort, a comprehensive whole-genome, transcriptome and clinical dataset, amenable for exploration of the impacts of therapies on genomic landscapes. Previous exposure to DNA-damaging chemotherapies and mutations affecting DNA repair genes, including POLQ and genes encoding Polζ, were associated with genome-wide, therapy-induced mutagenesis. Exposure to platinum therapies coincided with signatures SBS31 and DSB5 and, when combined with DNA synthesis inhibitors, signature SBS17b. Alterations in ESR1, EGFR, CTNNB1, FGFR1, VEGFA and DPYD were consistent with drug resistance and sensitivity. Recurrent noncoding events were found in regulatory region hotspots of genes including TERT, PLEKHS1, AP2A1 and ADGRG6. Mutation burden and immune signatures corresponded with overall survival and response to immunotherapy. Our data offer a rich resource for investigation of advanced cancers and interpretation of whole-genome and transcriptome sequencing in the context of a cancer clinic.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy
2.
Elife ; 82019 03 11.
Article in English | MEDLINE | ID: mdl-30855227

ABSTRACT

The physical interactions of growing bacterial cells with each other and with their surroundings significantly affect the structure and dynamics of biofilms. Here a 3D agent-based model is formulated to describe the establishment of simple bacterial colonies expanding by the physical force of their growth. With a single set of parameters, the model captures key dynamical features of colony growth by non-motile, non EPS-producing E. coli cells on hard agar. The model, supported by experiment on colony growth in different types and concentrations of nutrients, suggests that radial colony expansion is not limited by nutrients as commonly believed, but by mechanical forces. Nutrient penetration instead governs vertical colony growth, through thin layers of vertically oriented cells lifting up their ancestors from the bottom. Overall, the model provides a versatile platform to investigate the influences of metabolic and environmental factors on the growth and morphology of bacterial colonies.


Subject(s)
Agar , Culture Media , Escherichia coli/growth & development , Mechanical Phenomena , Computer Simulation , Escherichia coli/metabolism , Spatio-Temporal Analysis
3.
mBio ; 9(1)2018 02 13.
Article in English | MEDLINE | ID: mdl-29440576

ABSTRACT

In nature, bacteria frequently experience many adverse conditions, including heat, oxidation, acidity, and hyperosmolarity, which all tend to slow down if not outright stop cell growth. Previous work on bacterial stress mainly focused on understanding gene regulatory responses. Much less is known about how stresses compromise protein synthesis, which is the major driver of cell growth. Here, we quantitatively characterize the translational capacity of Escherichia coli cells growing exponentially under hyperosmotic stress. We found that hyperosmotic stress affects bacterial protein synthesis through reduction of the translational elongation rate, which is largely compensated for by an increase in the cellular ribosome content compared with nutrient limitation at a similar growth rate. The slowdown of translational elongation is attributed to a reduction in the rate of binding of tRNA ternary complexes to the ribosomes.IMPORTANCE Hyperosmotic stress is a common stress condition confronted by E. coli during infection of the urinary tract. It can significantly compromise the bacterial growth rate. Protein translation capacity is a critical component of bacterial growth. In this study, we find for the first time that hyperosmotic stress causes substantial slowdown in bacterial ribosome translation elongation. The slowdown of translation elongation originates from a reduced binding rate of tRNA ternary complex to the ribosomes.


Subject(s)
Escherichia coli/drug effects , Escherichia coli/physiology , Osmotic Pressure , Peptide Chain Elongation, Translational , Stress, Physiological , Escherichia coli Proteins/biosynthesis , RNA, Transfer/metabolism , Ribosomes/metabolism
4.
Nat Microbiol ; 2: 16231, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27941827

ABSTRACT

Bacteria growing under different conditions experience a broad range of demand on the rate of protein synthesis, which profoundly affects cellular resource allocation. During fast growth, protein synthesis has long been known to be modulated by adjusting the ribosome content, with the vast majority of ribosomes engaged at a near-maximal rate of elongation. Here, we systematically characterize protein synthesis by Escherichia coli, focusing on slow-growth conditions. We establish that the translational elongation rate decreases as growth slows, exhibiting a Michaelis-Menten dependence on the abundance of the cellular translational apparatus. However, an appreciable elongation rate is maintained even towards zero growth, including the stationary phase. This maintenance, critical for timely protein synthesis in harsh environments, is accompanied by a drastic reduction in the fraction of active ribosomes. Interestingly, well-known antibiotics such as chloramphenicol also cause a substantial reduction in the pool of active ribosomes, instead of slowing down translational elongation as commonly thought.


Subject(s)
Escherichia coli/growth & development , Escherichia coli/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology
5.
Mol Syst Biol ; 11(10): 836, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26519362

ABSTRACT

Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of "useless" proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7- to 8-fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3- to 4-fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ~8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/biosynthesis
6.
Proc Natl Acad Sci U S A ; 111(7): 2596-601, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24550288

ABSTRACT

Reaction-diffusion models have been used as a paradigm for describing the de novo emergence of biological patterns such as stripes and spots. In many organisms, these initial patterns are typically refined and elaborated over the subsequent course of development. Here we study the formation of secondary hair follicle patterns in the skin of developing mouse embryos. We used the expression of sex-determining region Y box 2 to identify and distinguish the primary and secondary hair follicles and to infer the spatiotemporal dynamics of the follicle formation process. Quantitative analysis of the specific follicle patterns observed reveals a simple geometrical rule governing the formation of secondary follicles, and motivates an expansion-induction (EI) model in which new follicle formation is driven by the physical growth of the embryo. The EI model requires only one diffusible morphogen and provides quantitative, accurate predictions on the relative positions and timing of secondary follicle formation, using only the observed configuration of primary follicles as input. The same model accurately describes the positions of additional follicles that emerge from skin explants treated with an activator. Thus, the EI model provides a simple and robust mechanism for predicting secondary space-filling patterns in growing embryos.


Subject(s)
Hair Follicle/embryology , Models, Biological , Morphogenesis/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Patterning , Carrier Proteins/metabolism , Computer Simulation , Galactosides , Histological Techniques , Indoles , Mice
7.
Phys Rev Lett ; 110(2): 025501, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23383913

ABSTRACT

In the glassy state, all materials undergo a process of structural recovery as they age towards equilibrium. The resultant increase of relaxation times t(α) is frequently described with a sublinear power of the wait time t(w)(µ) with an apparent aging exponent µ. We show with molecular dynamics simulations of a Lennard-Jones glass former at various temperatures that the observed aging exponent can be strongly influenced by crossover effects from the freshly quenched state at short t(w) and into the equilibrated state at long t(w). The aging behavior on the molecular level is quantitatively reproduced by a coarse-grained continuous time random walk description over the entire range of temperatures and wait times. Our model glass always shows normal aging, t(α)∼t(w), when the observation time window is no longer affected by crossover effects, in agreement with the well-known trap model of aging.

8.
J Chem Phys ; 133(16): 164513, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-21033811

ABSTRACT

Molecular dynamics simulations are used to investigate the effects of deformation on the segmental dynamics in an aging polymer glass. Individual particle trajectories are decomposed into a series of discontinuous hops, from which we obtain the full distribution of relaxation times and displacements under three deformation protocols: step stress (creep), step strain, and constant strain rate deformation. As in experiments, the dynamics can be accelerated by several orders of magnitude during deformation, and the history dependence is entirely erased during yield (mechanical rejuvenation). Aging can be explained as a result of the long tails in the relaxation time distribution of the glass, and similarly, mechanical rejuvenation is understood through the observed narrowing of this distribution during yield. Although the relaxation time distributions under deformation are highly protocol specific, in each case they may be described by a universal acceleration factor that depends only on the strain.


Subject(s)
Polymers/chemistry , Molecular Dynamics Simulation , Stress, Mechanical
9.
Phys Rev Lett ; 104(20): 205501, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20867036

ABSTRACT

A molecular level analysis of segmental trajectories obtained from molecular dynamics simulations is used to obtain the full relaxation time spectrum in aging polymer glasses subject to three different deformation protocols. As in experiments, dynamics can be accelerated by several orders of magnitude, and a narrowing of the distribution of relaxation times during creep is directly observed. Additionally, the acceleration factor describing the transformation of the relaxation time distributions is computed and found to obey a universal dependence on the strain, independent of age and deformation protocol.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 1): 041502, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18999430

ABSTRACT

Mechanical rejuvenation and overaging of glasses is investigated through stochastic simulations of the soft glassy rheology (SGR) model. Strain- and stress-controlled deformation cycles for a wide range of loading conditions are analyzed and compared to molecular dynamics simulations of a model polymer glass. Results indicate that deformation causes predominantly rejuvenation, whereas overaging occurs only at very low temperatures, small strains, and for high initial energy states. Although the creep compliance in the SGR model exhibits full aging independent of applied load, large stresses in the nonlinear creep regime cause configurational changes leading to rejuvenation of the relaxation time spectrum probed after a stress cycle. During recovery, however, the rejuvenated state rapidly returns to the original aging trajectory due to collective relaxations of the internal strain.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(3 Pt 1): 031802, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17930264

ABSTRACT

We study the effect of physical aging on the mechanical properties of a model polymer glass using molecular dynamics simulations. The creep compliance is determined simultaneously with the structural relaxation under a constant uniaxial load below yield at constant temperature. The model successfully captures universal features found experimentally in polymer glasses, including signatures of mechanical rejuvenation. We analyze microscopic relaxation time scales and show that they exhibit the same aging characteristics as the macroscopic creep compliance. In addition, our model indicates that the entire distribution of relaxation times scales identically with age. Despite large changes in mobility, we observe comparatively little structural change except for a weak logarithmic increase in the degree of short-range order that may be correlated with an observed decrease in aging with increasing load.

SELECTION OF CITATIONS
SEARCH DETAIL
...