Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Catal ; 14(7): 4379-4394, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38633402

ABSTRACT

Many enzymes display non-Arrhenius behavior with curved Arrhenius plots in the absence of denaturation. There has been significant debate about the origin of this behavior and recently the role of the activation heat capacity (ΔCP⧧) has been widely discussed. If enzyme-catalyzed reactions occur with appreciable negative values of ΔCP⧧ (arising from narrowing of the conformational space along the reaction coordinate), then curved Arrhenius plots are a consequence. To investigate these phenomena in detail, we have collected high precision temperature-rate data over a wide temperature interval for a model glycosidase enzyme MalL, and a series of mutants that change the temperature-dependence of the enzyme-catalyzed rate. We use these data to test a range of models including macromolecular rate theory (MMRT) and an equilibrium model. In addition, we have performed extensive molecular dynamics (MD) simulations to characterize the conformational landscape traversed by MalL in the enzyme-substrate complex and an enzyme-transition state complex. We have crystallized the enzyme in a transition state-like conformation in the absence of a ligand and determined an X-ray crystal structure at very high resolution (1.10 Å). We show (using simulation) that this enzyme-transition state conformation has a more restricted conformational landscape than the wildtype enzyme. We coin the term "transition state-like conformation (TLC)" to apply to this state of the enzyme. Together, these results imply a cooperative conformational transition between an enzyme-substrate conformation (ES) and a transition-state-like conformation (TLC) that precedes the chemical step. We present a two-state model as an extension of MMRT (MMRT-2S) that describes the data along with a convenient approximation with linear temperature dependence of the activation heat capacity (MMRT-1L) that can be used where fewer data points are available. Our model rationalizes disparate behavior seen for MalL and previous results for a thermophilic alcohol dehydrogenase and is consistent with a raft of data for other enzymes. Our model can be used to characterize the conformational changes required for enzyme catalysis and provides insights into the role of cooperative conformational changes in transition state stabilization that are accompanied by changes in heat capacity for the system along the reaction coordinate. TLCs are likely to be of wide importance in understanding the temperature dependence of enzyme activity and other aspects of enzyme catalysis.

2.
J R Soc Interface ; 20(208): 20230337, 2023 11.
Article in English | MEDLINE | ID: mdl-37935360

ABSTRACT

Red edge excitation shift (REES) spectroscopy relies on the unique emission profiles of fluorophore-solvent interactions to profile protein molecular dynamics. Recently, we reported the use of REES to compare the stability of 32 polymorphic IgG antibodies natively containing tryptophan reporter fluorophores. Here, we expand on this work to investigate the sensitivity of REES to variations in tryptophan content using a subset of IgG3 antibodies containing arginine to tryptophan polymorphisms. Structural analysis revealed that the additional tryptophan residues were situated in highly solvated environments. Subsequently, REES showed clear differences in fluorescence emission profiles when compared with the unmutated variants, thereby limiting direct comparison of their structural dynamics. These findings highlight the exquisite sensitivity of REES to minor variations in protein structure and tryptophan composition.


Subject(s)
Proteins , Tryptophan , Tryptophan/chemistry , Spectrometry, Fluorescence/methods
3.
Protein Sci ; 32(3): e4589, 2023 03.
Article in English | MEDLINE | ID: mdl-36759959

ABSTRACT

The constant regions of clinical monoclonal antibodies are derived from a select number of allotypes found in IgG subclasses. Despite a long-term acknowledgment that this diversity may impact both antibody function and developability, there is a lack of data on the stability of variants carrying these mutations. Here, we generated a panel of IgG1, IgG2, and IgG3 antibodies with 32 unique constant region alleles and performed a systematic comparison of stability using red edge excitation shift (REES). This technique exploits the fluorescent properties of tryptophan residues to measure antibody structural dynamics which predict flexibility and the propensity to unfold. Our REES measurements revealed broad stability differences between subclasses with IgG3 possessing the poorest overall stability. Further interrogation of differences between variants within each subclass enabled the high-resolution profiling of individual allotype stabilities. Crucially, these observed differences were not found to be linked to N297-linked glycan heterogeneity. Our work demonstrates diverse stabilities (and dynamics) for a range of naturally occurring constant domain alleles and the utility of REES as a method for rapid and sensitive antibody stability profiling, requiring only laboratory spectrophotometry equipment.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Immunoglobulin G/chemistry
4.
Trends Pharmacol Sci ; 43(2): 123-135, 2022 02.
Article in English | MEDLINE | ID: mdl-34895944

ABSTRACT

The biophysical and functional properties of monoclonal antibody (mAb) drug candidates are often improved by protein engineering methods to increase the probability of clinical efficacy. One emerging method is deep mutational scanning (DMS) which combines the power of exhaustive protein mutagenesis and functional screening with deep sequencing and bioinformatics. The application of DMS has yielded significant improvements to the affinity, specificity, and stability of several preclinical antibodies alongside novel applications such as introducing multi-specific binding properties. DMS has also been applied directly on target antigens to precisely map antibody-binding epitopes and notably to profile the mutational escape potential of viral targets (e.g., SARS-CoV-2 variants). Finally, DMS combined with machine learning is enabling advances in the computational screening and engineering of therapeutic antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Spike Glycoprotein, Coronavirus
5.
Front Immunol ; 11: 2016, 2020.
Article in English | MEDLINE | ID: mdl-32973808

ABSTRACT

Polymorphic diversity in antibody constant domains has long been defined by allotypic motifs that cross react with the sera of other individuals. Improvements in sequencing technologies have led to the discovery of a large number of new allelic sequences that underlie this diversity. Many of the point mutations lie outside traditional allotypic motifs suggesting they do not elicit immunogenic responses. As antibodies play an important role in immune defense and biotechnology, understanding how this newly resolved diversity influences the function of antibodies is important. This review investigates the current known diversity of antibody alleles at a protein level for each antibody isotype as well as the kappa and lambda light chains. We focus on evidence emerging for how these mutations perturb antibody interactions with antigens and Fc receptors that are critical for function, as well as the influence this might have on the use of antibodies as therapeutics and reagents.


Subject(s)
Immunoglobulin Allotypes/immunology , Immunoglobulin Constant Regions/genetics , Alleles , Animals , Antibody Formation , Antibody-Dependent Cell Cytotoxicity , Cross Reactions , Genetic Variation , Humans , Receptors, Fc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL