Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 25(1): 168-197, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225354

ABSTRACT

Cell commitment to tumourigenesis and the onset of uncontrolled growth are critical determinants in cancer development but the early events directing tumour initiating cell (TIC) fate remain unclear. We reveal a single-cell transcriptome profile of brain TICs transitioning into tumour growth using the brain tumour (brat) neural stem cell-based Drosophila model. Prominent changes in metabolic and proteostasis-associated processes including ribogenesis are identified. Increased ribogenesis is a known cell adaptation in established tumours. Here we propose that brain TICs boost ribogenesis prior to tumour growth. In brat-deficient TICs, we show that this dramatic change is mediated by upregulated HEAT-Repeat Containing 1 (HEATR1) to promote ribosomal RNA generation, TIC enlargement and onset of overgrowth. High HEATR1 expression correlates with poor glioma patient survival and patient-derived glioblastoma stem cells rely on HEATR1 for enhanced ribogenesis and tumourigenic potential. Finally, we show that HEATR1 binds the master growth regulator MYC, promotes its nucleolar localisation and appears required for MYC-driven ribogenesis, suggesting a mechanism co-opted in ribogenesis reprogramming during early brain TIC development.


Subject(s)
Brain Neoplasms , Glioblastoma , Minor Histocompatibility Antigens , Proto-Oncogene Proteins c-myc , RNA-Binding Proteins , Animals , Humans , Brain/metabolism , Brain Neoplasms/metabolism , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , DNA-Binding Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Glioblastoma/metabolism , Glioma/pathology , Minor Histocompatibility Antigens/metabolism , Neoplastic Stem Cells/metabolism , RNA-Binding Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism
2.
PLoS Biol ; 18(12): e3001023, 2020 12.
Article in English | MEDLINE | ID: mdl-33284791

ABSTRACT

The way we perceive the world is strongly influenced by our expectations. In line with this, much recent research has revealed that prior expectations strongly modulate sensory processing. However, the neural circuitry through which the brain integrates external sensory inputs with internal expectation signals remains unknown. In order to understand the computational architecture of the cortex, we need to investigate the way these signals flow through the cortical layers. This is crucial because the different cortical layers have distinct intra- and interregional connectivity patterns, and therefore determining which layers are involved in a cortical computation can inform us on the sources and targets of these signals. Here, we used ultra-high field (7T) functional magnetic resonance imaging (fMRI) to reveal that prior expectations evoke stimulus-specific activity selectively in the deep layers of the primary visual cortex (V1). These findings are in line with predictive processing theories proposing that neurons in the deep cortical layers represent perceptual hypotheses and thereby shed light on the computational architecture of cortex.


Subject(s)
Motivation/physiology , Visual Cortex/physiology , Visual Perception/physiology , Adult , Brain Mapping/methods , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Photic Stimulation/methods , Visual Cortex/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...