Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Med Chem ; 61(3): 934-945, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29236497

ABSTRACT

As a part of our program to identify potent GPR40 agonists capable of being dosed orally once daily in humans, we incorporated fused heterocycles into our recently disclosed spiropiperidine and tetrahydroquinoline acid derivatives 1, 2, and 3 with the intention of lowering clearance and improving the maximum absorbable dose (Dabs). Hypothesis-driven structural modifications focused on moving away from the zwitterion-like structure. and mitigating the N-dealkylation and O-dealkylation issues led to triazolopyridine acid derivatives with unique pharmacology and superior pharmacokinetic properties. Compound 4 (LY3104607) demonstrated functional potency and glucose-dependent insulin secretion (GDIS) in primary islets from rats. Potent, efficacious, and durable dose-dependent reductions in glucose levels were seen during glucose tolerance test (GTT) studies. Low clearance, volume of distribution, and high oral bioavailability were observed in all species. The combination of enhanced pharmacology and pharmacokinetic properties supported further development of this compound as a potential glucose-lowering drug candidate.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drug Discovery , Hypoglycemic Agents/pharmacology , Pyridines/pharmacology , Receptors, G-Protein-Coupled/agonists , Triazoles/pharmacology , Administration, Oral , Animals , Dogs , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Male , Pyridines/administration & dosage , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats , Structure-Activity Relationship , Triazoles/administration & dosage , Triazoles/chemical synthesis , Triazoles/pharmacokinetics
2.
Pharmacol Res Perspect ; 5(3): e00316, 2017 06.
Article in English | MEDLINE | ID: mdl-28603634

ABSTRACT

Prostaglandin (PG) E2 is the key driver of inflammation associated with arthritic conditions. Inhibitors of PGE 2 production (NSAIDs and Coxibs) are used to treat these conditions, but carry significant side effect risks due to the inhibition of all prostanoids that play important physiological function. The activities of PGE 2 are transduced through various receptor sub-types. Prostaglandin E2 type 4 receptor (EP4) is associated with the development of inflammation and autoimmunity. We therefore are interested in identifying novel EP4 antagonists to treat the signs and symptoms of arthritis without the potential side effects of PGE 2 modulators such as NSAIDs and Coxibs. Novel EP4 antagonists representing distinct chemical scaffolds were identified using a variety of in vitro functional assays and were shown to be selective and potent. The compounds were shown to be efficacious in animal models of analgesia, inflammation, and arthritis.

3.
Bioorg Med Chem Lett ; 27(6): 1478-1483, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28190634

ABSTRACT

We describe a novel class of acidic mPGES-1 inhibitors with nanomolar enzymatic and human whole blood (HWB) potency. Rational design in conjunction with structure-based design led initially to the identification of anthranilic acid 5, an mPGES-1 inhibitor with micromolar HWB potency. Structural modifications of 5 improved HWB potency by over 1000×, reduced CYP2C9 single point inhibition, and improved rat clearance, which led to the selection of [(cyclopentyl)ethyl]benzoic acid compound 16 for clinical studies. Compound 16 showed an IC80 of 24nM for inhibition of PGE2 formation in vitro in LPS-stimulated HWB. A single oral dose resulted in plasma concentrations of 16 that exceeded its HWB IC80 in both rat (5mg/kg) and dog (3mg/kg) for over twelve hours.


Subject(s)
Benzoates/chemistry , Benzoates/pharmacology , Drug Discovery , Microsomes/drug effects , Prostaglandin-E Synthases/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Microsomes/enzymology , Prostaglandin-E Synthases/chemistry , Rats
4.
Bioorg Med Chem Lett ; 26(19): 4824-4828, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27554445

ABSTRACT

Here we report on novel, potent 3,3-dimethyl substituted N-aryl piperidine inhibitors of microsomal prostaglandin E synthases-1(mPGES-1). Example 14 potently inhibited PGE2 synthesis in an ex vivo human whole blood (HWB) assay with an IC50 of 7nM. In addition, 14 had no activity in human COX-1 or COX-2 assays at 30µM, and failed to inhibit human mPGES-2 at 62.5µM in a microsomal prep assay. These data are consistent with selective mPGES-1-mediated reduction of PGE2. In dog, 14 had oral bioavailability (74%), clearance (3.62mL/(min*kg)) and volume of distribution (Vd,ss=1.6L/kg) values within our target ranges. For these reasons, 14 was selected for further study.


Subject(s)
Piperidines/chemistry , Piperidines/pharmacology , Prostaglandin-E Synthases/antagonists & inhibitors , A549 Cells , Animals , Crystallography, X-Ray , Dogs , Humans , Piperidines/pharmacokinetics , Rats , Species Specificity , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 26(9): 2303-7, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27020304

ABSTRACT

Continued SAR optimization of a series of 3-methylpyridine-2-carbonyl amino-2,4-dimethyl-benzoic acid led to the selection of compound 4f for clinical studies. Compound 4f showed an IC50 of 123nM for inhibition of PGE2-induced TNFα reduction in an ex vivo LPS-stimulated human whole blood assay (showing >10-fold increase over clinical compound CJ-023,423). Pharmacokinetic profile, selectivity and in vivo efficacy comparing 4f to NSAID diclofenac in the monoiodoacetic acid (MIA) pain model and adjuvant induced arthritis (AIA) inflammatory model are included.


Subject(s)
Benzoates/pharmacology , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Animals , Benzoates/chemistry , Rats , X-Ray Diffraction
6.
Bioorg Med Chem Lett ; 26(3): 931-935, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26764191

ABSTRACT

Two new series of EP4 antagonists containing a 3-methylaryl-2-carbonyl core have been identified. One series has a 3-substituted-phenyl core, while the other one incorporates a 3-substituted pyridine. Both series led to compounds with potent activity in functional and human whole blood (hWB) assays. In the pyridine series, compound 7a was found to be a highly potent and selective EP4 antagonist, with suitable rat and dog pharmacokinetic profiles.


Subject(s)
Benzoic Acid/chemistry , Picolines/chemistry , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Animals , Benzoic Acid/pharmacokinetics , Benzoic Acid/therapeutic use , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical , Half-Life , Humans , Inhibitory Concentration 50 , Pain/drug therapy , Protein Binding , Rats , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 26(1): 105-9, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26608552

ABSTRACT

A novel series of EP4 antagonists, based on a quinoline scaffold, has been discovered. Medicinal chemistry efforts to optimize the potency of the initial hit are described. A highly potent compound in a clinically relevant human whole blood assay was identified. Selectivity and pharmacokinetic profiles of this compound are discussed.


Subject(s)
Benzoates/pharmacology , Drug Discovery , Naphthalenes/pharmacology , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Benzoates/chemical synthesis , Benzoates/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 25(16): 3176-8, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26091726

ABSTRACT

EP4 is a prostaglandin E2 receptor that is a target for potential anti-nociceptive therapy. Described herein is a class of amphoteric EP4 antagonists which reverses PGE2-induced suppression of TNFα production in human whole blood. From this class, a potent and highly bioavailable compound (6) has been selected for potential clinical studies. EP4 binding and functional data, selectivity, and pharmacokinetic properties of this compound are included.


Subject(s)
Analgesics/chemistry , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Analgesics/metabolism , Analgesics/pharmacokinetics , Animals , Blood Cells/cytology , Blood Cells/drug effects , Blood Cells/metabolism , Dogs , Half-Life , Humans , Lipopolysaccharides/toxicity , Protein Binding , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism
9.
Bioorg Med Chem Lett ; 17(24): 6744-9, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18029178

ABSTRACT

A series of potent amide linked PPARgamma/delta dual agonists (1a) has been discovered through rational design. In the ZDF rat model of type 2 diabetes, compound (R)-3-[4-(3-{1-[(5-chloro-1,3-dimethyl-1H-indole-2-carbonyl)-amino]-ethyl}-5-fluoro-phenoxy)-2-ethyl-phenyl]-propionic acid (42) from this series has demonstrated glucose lowering efficacy comparable to the marketed PPARgamma agonist rosiglitazone with less weight gain.


Subject(s)
Amides/chemistry , Drug Design , Indoles/chemical synthesis , PPAR delta/agonists , PPAR gamma/agonists , Animals , Combinatorial Chemistry Techniques , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Indoles/chemistry , Indoles/pharmacology , Molecular Structure , Rats
12.
Thromb Res ; 116(3): 265-71, 2005.
Article in English | MEDLINE | ID: mdl-15935836

ABSTRACT

Thrombin Activatable Fibrinolysis Inhibitor (TAFI) is a basic carboxypeptidase that functions as a fibrinolysis inhibitor through the cleavage of C-terminal lysine on partially degraded fibrin. Modulation of TAFI activity provides a potential therapy for thrombosis complications by potentiating fibrinolysis. In our study, we identified three novel TAFI inhibitors containing a cysteine backbone. Three cysteine derivatives, guanidinyl-L-cysteine, glycyl-L-cysteine, and glycyl-glycyl-L-cysteine were tested in TAFI substrate assays and showed K(app)(i)=0.08, 0.14, and 0.99 microM, respectively. Subsequent fibrinolysis assays confirmed their TAFI inhibitory activities. Guanidinyl-L-cysteine showed inhibitory activity in a human plasma clot lysis assay (IC(50)=9.4 microM). Identification of these cysteine derivatives represents an opportunity to develop potent and specific TAFI inhibitors.


Subject(s)
Carboxypeptidase B2/antagonists & inhibitors , Cysteine/analogs & derivatives , Cysteine/pharmacology , Fibrinolysis/drug effects , Humans , Kinetics , Ligands , Models, Molecular , Oligopeptides/pharmacology , Structure-Activity Relationship
13.
Mol Endocrinol ; 19(6): 1593-605, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15831517

ABSTRACT

LSN862 is a novel peroxisome proliferator-activated receptor (PPAR)alpha/gamma dual agonist with a unique in vitro profile that shows improvements on glucose and lipid levels in rodent models of type 2 diabetes and dyslipidemia. Data from in vitro binding, cotransfection, and cofactor recruitment assays characterize LSN862 as a high-affinity PPARgamma partial agonist with relatively less but significant PPARalpha agonist activity. Using these same assays, rosiglitazone was characterized as a high-affinity PPARgamma full agonist with no PPARalpha activity. When administered to Zucker diabetic fatty rats, LSN862 displayed significant glucose and triglyceride lowering and a significantly greater increase in adiponectin levels compared with rosiglitazone. Expression of genes involved in metabolic pathways in the liver and in two fat depots from compound-treated Zucker diabetic fatty rats was evaluated. Only LSN862 significantly elevated mRNA levels of pyruvate dehydrogenase kinase isozyme 4 and bifunctional enzyme in the liver and lipoprotein lipase in both fat depots. In contrast, both LSN862 and rosiglitazone decreased phosphoenol pyruvate carboxykinase in the liver and increased malic enzyme mRNA levels in the fat. In addition, LSN862 was examined in a second rodent model of type 2 diabetes, db/db mice. In this study, LSN862 demonstrated statistically better antidiabetic efficacy compared with rosiglitazone with an equivalent side effect profile. LSN862, rosiglitazone, and fenofibrate were each evaluated in the humanized apoA1 transgenic mouse. At the highest dose administered, LSN862 and fenofibrate reduced very low-density lipoprotein cholesterol, whereas, rosiglitazone increased very low-density lipoprotein cholesterol. LSN862, fenofibrate, and rosiglitazone produced maximal increases in high-density lipoprotein cholesterol of 65, 54, and 30%, respectively. These findings show that PPARgamma full agonist activity is not necessary to achieve potent and efficacious insulin-sensitizing benefits and demonstrate the therapeutic advantages of a PPARalpha/gamma dual agonist.


Subject(s)
Alkynes/pharmacology , Cinnamates/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hyperlipidemias/drug therapy , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Adiponectin , Alkynes/chemistry , Animals , Binding, Competitive , Body Weight , Cholesterol/metabolism , Cholesterol, HDL/metabolism , Cholesterol, VLDL/metabolism , Cinnamates/chemistry , Diabetes Mellitus, Type 2/metabolism , Dose-Response Relationship, Drug , Fenofibrate/pharmacology , Gene Expression Regulation, Enzymologic , Glucose/metabolism , Homozygote , Humans , Hyperlipidemias/metabolism , In Vitro Techniques , Insulin/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Kinetics , Lipid Metabolism , Liver/enzymology , Male , Mice , Mice, Transgenic , Models, Chemical , Protein Binding , Protein Isoforms , RNA, Messenger/metabolism , Rats , Rosiglitazone , Thiazolidinediones/pharmacology , Transfection , Triglycerides/metabolism , Two-Hybrid System Techniques
14.
Bioorg Med Chem Lett ; 15(1): 51-5, 2005 Jan 03.
Article in English | MEDLINE | ID: mdl-15582409

ABSTRACT

Herein we describe a series of potent and selective PPARgamma agonists with moderate PPARalpha affinity and little to no affinity for other nuclear receptors. In vivo studies in a NIDDM animal model (ZDF rat) showed that these compounds are efficacious at low doses in glucose normalization and plasma triglyceride reduction. Compound 1b (LY519818) was selected from our SAR studies to be advanced to clinical evaluation for the treatment of type II diabetes.


Subject(s)
Cinnamates/pharmacology , Diabetes Mellitus, Type 2/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Animals , Blood Glucose/metabolism , Cinnamates/administration & dosage , Cinnamates/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Rats , Rats, Zucker , Structure-Activity Relationship , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...